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HILARY TERM 2015

Lecturer Dr. Richard F. Katz; richard.katz@earth.ox.ac.uk

Demonstrator Helen Ashcroft; helen.ashcroft@earth.ox.ac.uk

Books We will frequently refer to two books:

• Concepts in Thermal Physics by Blundell and Blundell, published by Oxford Uni-
versity Press. (Hereafter BB)

• Fundamentals of Physics by Halliday, Resnick, and Walker, published by John
Wiley. (Hereafter HRW)

You are encouraged to purchase these for use during the course, for consultation during
future courses at Oxford, and as a reference throughout your career in science. Both
books are available at University and college libraries.

Lectures There will be about three lectures per week for the first four weeks of term. Please
see the lecture schedule for details.

Lecture topics (Subject to modification)

Lecture 1 Preliminaries. Motivation; key concepts; the Ideal Gas law; temperature
and heat; the Zeroth law of thermodynamics; review of probability.

Lecture 2 Kinetic theory I. Microstates vs. macrostates; a statistical definition of
temperature; the Boltzmann distribution; geophysical application: isothermal at-
mosphere; the velocity distribution.

Lecture 3 Kinetic theory II. The Maxwell-Boltzmann distribution; pressure and the
Ideal Gas law; mean-free path.

Lecture 4 Kinetic theory III. Diffusion of heat; diffusion of chemical species; the heat
equation.

Lectures 5 Classical thermodynamics I. Internal energy; First law of thermodynamics;
adiabatic and isothermal processes; geophysical application: adiabatic atmosphere.

Lectures 6 Classical thermodynamics II. Second law of thermodynamics; heat engines;
the Carnot cycle.

Lecture 7 Classical thermodynamics III. Entropy; internal energy revisited; geophys-
ical application: adiabatic mantle and potential temperature.

Lecture 8 Classical thermodynamics IV. Phase transitions; latent heat; Clausius-
Clapyron; phase diagrams.

Lecture 9 Spill-over from previous lectures. Questions and discussion.

Practice sheets There will be three assigned practice sheets, to be distributed at the third
lecture each week. Each sheet will consist of several quantitative problems, and several
essay questions. The sheets are intended to help you develop, clarify, and assess your
understanding of the material. You should complete them carefully and thoroughly,
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taking the time neccessary to learn the requisite material. Do not expect that this will
be easy! At the end of this series of lectures, you should schedule a tutorial to discuss
your results. The names of possible tutors will be made available in lecture. Note that
these problems will not neccessarily cover the full scope of the taught material—they are
merely representative of the depth of understanding that is expected of you.

Problem classes There are three scheduled problem classes, one per week, starting in week
2. Come to these sessions prepared: having read, understood, and planned how to solve
the problems.

Other important points Please read carefully:

• These notes are not a complete description of the information that is to be
understood as part of the course. The complete description is contained in the
union of these notes, the lectures themselves, and the book-sections referred to
below and in the lectures. The level of mathematics that will be required on an
examination of this material is approximately equivalent to that of the assigned
problems.

• Questions in the notes are meant as a check on your understanding. Try to
answer them; if a question confuses you, it is an indication that you should review
the course materials and, perhaps, seek help from a peer, a tutor, or the lecturer.

• You are responsible for developing and assessing your own understanding of the
material by completing the problem sheets and discussing them with your tutors.
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1 Preliminaries

In this lecture we consider the motivation for a study of thermodynamics. We learn basic
concepts that form the basis for the rest of the material. We introduce the Ideal Gas law,
heat capacity, the Zeroth law of thermodynamics. There is a brief review of probability.

1.1 Why study thermal physics?

Material From the top of the atmosphere, to the centre of the inner core, to the first forms
life, Earth science is concerned with materials and how they behave under variable
conditions.

Energy Energy drives all terrestrial processes, and it links them together. From the nucleus
of an atom, the metabolism of an organism, the climate, the production and eruption
of molten rock, to the tectonic motions of the Earth’s surface plates, energy is the key
physical connection.

Mathematics Mathematics is the language that can best describe the physical world. Words
are a starting point, a means for communicating mathematical results, and a fall-back
in cases where we are yet unable to develop mathematical models.

1.2 Physics, mathematics, and this course

The purpose of this course of lectures is to introduce you to the physics of energy. We will
describe this physics with words, diagrams, and mathematics. The equations we will write
down are not recipes for obtaining a numerical answer to a problem; instead they encapsulate
the physical concepts, giving them a concise expression that can be manipulated using mathe-
matical rules. Hence the derivation of these equations is the process by which we go from a
physical idea to a mathematical expression. It will not be required that you reproduce these
derivations. However you should understand the physical concepts and assumptions that go
into them, and the mathematical results that come out, and how the two are connected.

1.3 Key concepts
BB 1.1,
1.2Mole A mole is a quantity of discrete objects. To be specific, a mole is equal to an Avogadro

number of objects: NA = 6.022× 1023. This is the number of atoms that are contained
in 12 g of the isotope 12C. It is merely a reference number.

The molar mass of an object is the mass of one object times the Avogadro number. For
example, the molar mass of British one-pound coins is 9.5 g ×NA = 57.2× 1023 g.

Number density The number density n is the number of particles within a given volume.
If you have N molecules of gas in a volume V then the number density of molecules is
n = N/V .
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Pressure A force applied over an area is called a pressure, and has units of Pascals:

pressure =
force

area
,

[
kg-m/s2

m2
≡ Pa

]
.

Thermodynamic limit (See the raindrops-on-roof analogy, BB 1.2) A very large number
of instances of a random variable, such that the differences of that variable from its
mean value average to nought.

Infinitessimal An infinitessimal is a mathematical representation of a vanishingly small
quantity. For some variable x, an infinitessimal change in x is written as dx. We can
take dx as being arbitrarily small : as small as we need it to be for the computation at
hand. The ratio of infinitessimal quantities is a derivative, e.g. dy/dx.

Extensive variable A quantity that scales with the size of the body it measures. Examples
(think of a container of a gas): volume, mass, kinetic energy. If you cut the container
in half, each new container will contain half the volume, mass, and kinetic energy.

Intensive variable A quantity that does NOT scale with the size of the body it measures.
Examples (again, think of a container of a gas): temperature, pressure, density. If
you cut the container in half, each half will have the same temperature, pressure, and
density as the original container of gas.

Classical thermodynamics deals with macroscopic properties of a system such as its pres-
sure, temperature, and volume. It consists of laws relating variations among these
quantities.

Kinetic theory of gasses considers the microscopic motions of molecules in a gas and uses
statistical averages to derive, in the thermodynamic limit, the macroscopic properties of
the gas.

1.4 The Ideal Gas Law
BB 1.3

The following are known from experiments on confined gasses

p ∝ V −1 Boyle’s law
V ∝ T Charles’ law
p ∝ T Gay-Lussac’s law

Putting these together gives pV ∝ T . We might also expect the pressure and the volume to
scale with the number of molecules N of the gas. Incorporating this and including a constant
of proportionality gives

pV = NkBT, (1)

where kB = R/NA J K−1 is Boltzmann’s constant (R = 8.315 J mol−1 K−1 is the Universal
Gas Constant). Verify that substitution for kB gives the familiar form pV = nmRT , where
nm = N/NA is the number of moles of gas molecules.

The Ideal Gas law is an equation of state, and is very useful. It tells us, for an ideal gas,
how any one property of the gas changes as we change other properties. It raises several
questions and comments:
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• This law was stated based on empirical measurements. How does it follow from first
principles? We will address this question using Kinetic Theory, starting in Lecture 2.

• What is an “ideal gas” anyway? Kinetic Theory will define this rigorously. For now,
lets say it is a dilute gas (i.e. there is a lot of empty space between molecules) in which
intermolecular forces and molecular diameter are both negligibly small. As it turns out,
these assumptions apply (approximately) to many gasses of interest.

• Not all gasses are well-described by this law. Not all materials that will concern us are
gasses.

• Consider the variables in equation (1): p, V , N , and T . The first three are rather clear
in their meaning: p is pressure or force per unit area; V is volume; N is the number
of molecules of gas. We can imagine simple ways to measure these. Temperature T ,
although intuitively obvious, is not so clear, when you consider it carefully. What is
temperature?

1.5 Temperature and heat

(A temporary definition) Temperature is a measure of “hotness” or “coldness.”

But what are “hotness” and “coldness?” To answer this question, consider two identical BB 4.1
HRW
18-7

blocks of material: block one possesses “hotness,” and block two possesses “coldness” (both
are completely insulated from the rest of existence). Now put these two blocks into thermal
contact with each other and leave them for a while—the blocks become indistinguishable.
The hot block (block one) has lost its hotness and the cold block (block two) has lost its
coldness, and hence the two are at the same temperature. The blocks are then said to be in
thermal equilibrium.

How did the process of thermalisation between our two blocks of different temperature
occur? Thermal energy flowed from block one to block two. BB 2.1

Thermal energy in transit is called heat Q.

The transfer of heat raised the temperature of block two and lowered the temperature of
block one until they were in thermal equilibrium.

How much heat was transferred? That depends on the difference in temperature between
the blocks, the mass of the blocks, as well as the specific heat capacity of the material in the
blocks. BB 2.2

HRW
18-8

Specific heat capacity is the amount of heat dQ required to change the temperature of a
unit mass of material by a specified, small amount dT.

From this definition, we can write that for a block of mass M kg, dQ = cM dT or

c =
1

M

dQ

dT
,

where c is the specific heat capacity in J K−1 kg−1.
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Now if blocks one and two were initially at temperatures T1 and T2, respectively, with
T1 > T2, then we can calculate their final temperatures, and the amount of heat transferred.
As stated above, the blocks are identical, so they have the same c and M , and we’ll assume
that c is independent of temperature. At thermal equilibrium, they both have the same
temperature, Tf . Because they are in thermal contact and otherwise insulated, the heat
transferred into each block must sum to zero. Thus we can write

Q1 +Q2 = cM(Tf − T1) + cM(Tf − T2) = 0

and solve to obtain Tf = (T1 + T2)/2. The heat transferred out of block one is thus Q1 =
cM(T2 − T1)/2 J; Q1 is negative because block one lost heat.

Question: Suppose blocks one and two start with different specific heat capacities (c1 and
c2) and different masses (M1 and M2). What are their final temperatures and how much heat
was transferred?∗

There’s just one small complication to be added to the discussion of heat capacity above:
we know that materials tend to expand or contract as they change temperature. We did notBB 2.2
specify whether our two-block thought experiment was carried out at constant pressure or at
constant volume (in a rigid container). In fact, there is a different specific heat for each of
these cases†. They are defined as:

cp =
1

M

(
dQ

dT

)

p

, (2a)

cV =
1

M

(
dQ

dT

)

V

. (2b)

1.6 The Zeroth law of thermodynamics

The concept of thermal equilibrium, introduced above, allows us to state the 0th law.

Zeroth law of thermodynamics: Two systems, each separately in thermal equilibrium
with a third, are in equilibrium with each other.

This is exactly as simple as it sounds. Suppose the two systems are blocks, and the third is
a thermometer. If both blocks are in thermal equilibrium with the same thermometer, then
both blocks are at the same temperature, and hence they are in thermal equilibrium with
each other. (N.B. the thermometer is a system with a temperature; in thermal equilibrium
that temperature is the same as the system that it is used to measure.) Another way to state
the 0th law: thermometers work.

1.7 Basic probability

Read: Chapter 3 of BB.

∗Answer: when the blocks reach thermal equilibrium, they have the same temperature—let’s call it Tf . As
before, the heat transferred into each block must sum to zero, since the system is isolated. Hence we can write:

c1M1(Tf − T1) + c2M2(Tf − T2) = 0,

and we can solve this equation for Tf .
†This distinction is especially important if the blocks are actually containers of gas.
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A discrete probability distribution gives the likelihood that a discrete random variable will
take on any given value. Consider a 6-sided die; let the discrete random variable xi represent
the different results of rolling and Pi the likelihood of obtaining the value xi (assume the die
is not “crooked.”). Then

xi = {1, 2, 3, 4, 5, 6},

Pi =

{
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6

}
.

Note that the sum of the probabilities must be equal to unity

∑

i

Pi = 1, (3)

and that the mean (or average, or expected value) of x is

〈x〉 =
∑

i

xiPi, (4)

and the mean of any function of x is given by

〈f(x)〉 =
∑

i

f(xi)Pi. (5)

Question: What are 〈x〉, 〈ax+ b〉, and
〈
x2
〉

for the die example above? (a and b are
constants.)

A continuous probability distribution gives the likelihood that a continuous random vari-
able x will take on a value with a given range (say x1 ≤ x ≤ x2):

∫ x2

x1

P (x)dx.

Analogous to the discrete distribution,

∫
P (x)dx = 1, (6)

〈x〉 =

∫
xP (x)dx, (7)

〈f(x)〉 =

∫
f(x)P (x)dx. (8)

Be sure to familiarise yourself with the properties of a Gaussian distribution, example 3.3
in BB. Also review the variance (BB 3.4) and the mean of the product of two independent
random variables (BB 3.6).
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2 Kinetic theory I

The purpose of the next three lectures is to introduce the Kinetic Theory of gasses. This is a
theory that aims to explain how macroscopic features of a gas system (pressure, temperature,
volume) arise from the microscopic motions and forces of molecules. We will see that many
macroscopic properties arise from the kinetic energy of molecules—this is the same kinetic
energy that you learned about in the lectures on Mechanics.

In this lecture we derive a statistical definition of temperature. We learn how, for a gas,
temperature determines the probability distribution of molecular velocities.

2.1 Microstates vs. macrostates

How can we describe the state of a collection of molecules that compose a closed box of
gas? For kinetic theory, we will need two descriptions: one that accounts for each individual
molecule, and another that accounts for the system as a whole. Before we talk about the gas,
let’s consider two simpler systems, dice and coins.

A microstate is a description of the state of each individual element of a system at a given
instant. In a system consisting of three individually labelled, six-sided dice on a table, the
microstate would be given by:

microstate s = [Die A: 3, Die B: 1, Die C: 6],

where the number corresponds to the face of each die that is pointing upward.

A macrostate is a description of the state of a system as a whole. In the dice example,
the macrostate could be definied as the sum of the three dice. In that case, for the given
microstate above, the macrostate would be

macrostate S = 3 + 1 + 6 = 10.

Next consider a system composed of five randomised coins, numbered one through five,
but otherwise indistinguishable. One microstate of the system is s = [H,T, T, T, T ], where aBB 4.3
H indicates “heads” and a T indicates “tails.” Clearly there are five different microstates s
that correspond to the macrostate S = 1, which indicates that one of the five coins is heads.
These are:

Microstates corresponding to S = 1:
s1 = [H,T, T, T, T ]
s2 = [T,H, T, T, T ]
s3 = [T, T,H, T, T ]
s4 = [T, T, T,H, T ]
s5 = [T, T, T, T,H]

In total, there are 25 = 32 distinct microstates of this 5-coin system. Key concept: each
distinct microstate is equally probable! In contrast, there are only six macrostates Si =
{0, 1, 2, 3, 4, 5}; these have different probabilities.



Lecture 2: Kinetic theory I 11

What is the probability of each macrostate? There is only one microstate corresponding
to the macrostate S = 0 so it has probability P0 = 1/32. There are 5!/(3! 2!) microstates
corresponding to three heads S = 3 (why?), so it has P3 = 10/32. The probabilities of all
macrostates are Pi =

{
1
32 ,

5
32 ,

10
32 ,

10
32 ,

5
32 ,

1
32

}
.

Question: Consider a system composed of three tetrahedral (4-sided) dice. (a) How many
microstates does this system have? (b) What is the probability that after rolling the dice,
the system is in the microstate s = [4, 4, 4]? (c) What is the probability that it is in the
macrostate S = 4?∗

2.2 A statistical definition of temperature

How can we understand temperature in terms of the motion of a collection of molecules?

Consider a container of gas with N total molecules; this system has a microstate and a
macrostate. The microstate might be defined as the kinetic energy ε of each molecule in the
system at a given instant,

s = [ε1, ε2, ε3, ..., εN ],

while the macrostate could be the temperature of the system at the same time. In general, BB 4.4
the microstate is unknowable, but we can assume that number of possible microstates depends
on the total energy E of the system; we denote the number of possible microstates for a given
total energy as Ω(E).

Now consider two containers of gas, each with N molecules. Suppose that initially, each
container has a different quantity of energy, E1 and E2, corresponding to a different number
of microstates, Ω1(E1) and Ω2(E2). The containers are brought into thermal contact but are
otherwise isolated so the total energy E = E1 + E2 is fixed. The number of microstates of
the combined system is Ω1(E1)Ω2(E2).

How will the total energy be distributed in thermal equilibrium? E1 and E2 will take on
values such that the combined system obtains the macrostate that corresponds to the largest
possible number of microstates. Why does this occur?

1. The system is rapidly changing from one microstate to another;

2. each of the Ω1Ω2 microstates is equally likely;

3. over a long enough time interval, the system will spend an equal amount of time in
each microstate. Its macrostate will be that which corresponds to the largest number
of different microstates.

So we seek the maximum of Ω1(E1)Ω2(E2) for all values of E1 and E2. We know that
these energies are not independent, however; in fact, E1 + E2 = E and so dE1 = −dE2. To
find the maximum, we can thus search over all values of E1:

d

dE1
(Ω1(E1)Ω2(E2)) = 0. (9)

∗Answers: (a) 64 microstates, (b) P = 1/64 = 0.015625, (c) P = 3/64 = 0.046875.
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Using the product rule and the relationship between dE1 and dE2 we can write

d ln Ω1

dE1
=

d ln Ω2

dE2
. (10)

This condition will hold when the blocks are in thermal equilibrium. We know that in thermal
equilibrium the temperature of each block is equal to the other. This motivates us to define
the temperature as

1

kBT
=

d ln Ω

dE
. (11)

You can verify that combining equations (10) and (11) gives T1 = T2. The choice of the
constant kB means that T has units of Kelvin and that our definition will have a useful
physical interpretation, as we shall see later.

2.3 The Boltzmann distribution

In a gas of temperature T , how much kinetic energy does any given molecule have? Since all
the molecules are bouncing around in the gas with different speeds, we can only answer this
in terms of a probability distribution, the Bolzmann distribution.

The Boltzmann distribution describes the probability that a single molecule within our
container of gas will have a given kinetic energy ε. Consider a microscopic system (one
molecule, chosen at random) in thermal contact with a huge energy reservoir (the reservoir is
huge because it contains many molecules, and much more energy than ε). There are several
important points to noteBB 4.6

• The total energy of the reservoir plus microscopic system (our one molecule) is fixed at
E. The reservoir has energy E − ε.

• Since ε � E, fluctuations of ε have a minuscule effect on the energy of the reservoir,
and we can assume the reservoir is at a fixed temperature, T .

• The one molecule, as a system by itself, is so simple that for each allowed value of its
energy, there is only one associated microstate: Ω(ε) = 1.

• For a given energy ε, the total number of microstates available to the coupled reservoir
and microscopic system is Ω(E−ε)×1. The probability that the microsystem has energy
ε is therefore given by P (ε) ∝ Ω(E − ε).

Since ε� E, we can make a simple, linear approximation of the quantity ln Ω(E − ε)

ln Ω(E − ε) ≈ ln Ω(E) +
d ln Ω

d(E)
(−ε), (12)

which is actually quite accurate because ε is very very small compared to E. Using our
definition of temperature from equation (11), we can write

ln Ω(E − ε) ≈ ln Ω(E)− ε

kBT
, (13)
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where T is the temperature of the reservoir. Exponentiating equation (13) and using P (ε) ∝
Ω(E − ε) we have

P (ε) ∝ e−ε/(kBT ). (14)

When properly normalised, equation (14) is the Boltzmann distribution.

A single molecule is coupled to a reservoir at temperature T . The probability P that the
single molecule has energy ε is proportional to the Boltzmann factor: P (ε) ∝ e−βε, where

β = (kBT )−1.

The Boltzmann factor states that the probability of our single molecule having an energy
ε decreases as ε gets larger, and that the rate at which probability decreases with increasing ε
is determined by the temperature of the gas reservoir. This is best understood with a graph,
Figure 1. In this figure, we compare the probability density functions for a single molecule in
two different containers: one at temperature Ta and one at temperature Tb.

Figure 1: A plot of the Boltzmann factor for two different temperatures, Ta and Tb. (Axis labels and
lines to be added by the student).

The Boltzmann distribution is
P (ε) = Ce−βε, (15)

where C is a normalisation factor, which ensures that
∫∞
0 P (ε)dε = 1. We will use this

important formula in the next lecture.

2.4 Geophysical application: isothermal atmosphere

We can use the Boltzmann factor to construct a model for the density of the atmosphere as
a function of height. To do so, we assume that the atmosphere is isothermal, with tempera- BB 4.7
ture T .

Method 1 – using the Boltzmann distribution The potential energy of a molecule
with mass m at height z in a gravity field with acceleration g is mgz. Hence we can write

P (z) ∝ e−mgz/(kBT ).

The number density of molecules at height z in the atmosphere will be proportional to the
probability P (z). This means that the number density (molecules per cubic meter) is

n(z) = n(0)e−mgz/(kBT ),

where n(0) is the number density at the surface of the Earth.
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Method 2 – using the Ideal Gas law We can check this result by trying to derive it
with a different approach. Consider a layer of the atmosphere between z and z+ dz that has
number density of particles n. The downward pressure exerted by this layer is

dp = −nmg dz.

Now recall equation (1), the ideal gas law. Dividing both sides by V gives p = nkBT, where
n is, again, the number density of molecules. Differentiating both sides gives

dp = dnkBT.

Combining this with our previous expression for dp gives

dn

n
= − mg

kBT
dz,

which we can integrate to give, again,

n(z) = n(0)e−mgz/(kBT ),

which is consistent with our earlier result.

We predict that the number density of the atmosphere decreases exponentially with height.
This turns out to be wrong, because our assumption of an isothermal atmosphere is wrong.
We will return to this problem later in the course.

2.5 The probability distribution for velocity

We now apply the Boltzmann distribution to determine the probability distribution g that a
molecule of gas will have a given velocity v = (vx, vy, vz). To do so, we make three important
assumptions.BB 5.1

• Molecular size is much smaller that intermolecular spacing, so collisions between
molecules are rare and negligiable.

• There are no intermolecular forces.

• Each molecule behaves like a microsystem coupled to a thermal reservoir at temperature
T , composed of all the other molecules in the gas.

Recall that the kinetic energy of a molecule is given by

1

2
mv2x +

1

2
mv2y +

1

2
mv2z =

1

2
mv2, (16)

where v = |v|. We can use the kinetic energy in each direction to define the Boltzmann factor;
for example, in the x-direction we have

g(vx) ∝ e−mv
2
x/(2kBT ). (17)
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Figure 2: A Gaussian distribution. (Axis labels and lines to be added by the student).

To find the normalisation factor for the Boltzmann distribution, we evaluate the integral

∫ ∞

−∞
e−mv

2
x/(2kBT )dvx =

√
2πkBT

m
. (18)

Then, since we require that
∫∞
−∞ g(vx)dvx = 1, we have

g(vx) =

√
m

2πkBT
e−mv

2
x/(2kBT ). (19)

This is a Gaussian distribution with a mean of zero and a variance of σ2x =
〈
(vx − 〈vx〉)2

〉
=

kBT/m; it is shown in Figure 2.

Note that there is nothing special about the x-direction; the distributions for the y- and
z-directions are exactly the same as equation (19).

g(vy) =

√
m

2πkBT
e−mv

2
y/(2kBT ). (20)

g(vz) =

√
m

2πkBT
e−mv

2
z/(2kBT ). (21)

In the next lecture, we’ll consider a slightly more complex quantity, the distribution of
molecular speeds. The above results will be useful to keep in mind.
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3 Kinetic theory II

In this lecture we derive the probability distribution of molecular speeds in a gas, a result
that will be very useful to us. We then examine how this distribution gives rise to a statistical
definition of gas pressure. We also introduce the concept of molecular collisions, and define
the mean free path.

In the last lecture we derived an expression for the distribution of velocity in each of the
three Cartesian directions,

g(vj) =

√
m

2πkBT
e−mv

2
j /(2kBT ), (22)

where j can be replaced with x, y, or z. We can use this result to determine the fraction of
molecules with velocity between v = (vx, vy, vz) and v + dv = (vx + dvx, vy + dvy, vz + dvz)
by simply multiplying them together:

g(vx)dvxg(vy)dvyg(vz)dvz ∝ e−mv
2
x/(2kBT )dvx e−mv

2
y/(2kBT )dvy e−mv

2
z/(2kBT )dvz,

∝ e−m(v2x+v
2
y+v

2
z)/(2kBT ) dvx dvy dvz, (23)

∝ e−mv
2/(2kBT ) dvx dvy dvz. (24)

3.1 The Maxwell-Boltzmann distribution

A more useful quantity, however, is the distribution of molecule speed v = |v|. In particular,BB 5.2
we can ask: what is the fraction of molecules that is travelling with speed between v and
v + dv? In velocity space, this corresponds to the spherical shell between radii v and v + dv,
shown in Figure 3.

Figure 3: Velocity space. (Axis labels and lines to be added by the student).

What is the volume of velocity-space between the two shells? The volume of each spherical
shell is

V (v) =
4

3
πv3.

Therefore the volume between the two shells is

dV =
dV

dv
dv = 4πv2dv.
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Now we can define the probability distribution f such that the probability that a molecule
will have speed between v and v + dv is given by

f(v)dV ∝ v2 e−mv
2/(2kBT ) dv, (25)

where the factor 4π has been dropped since this is a statement of proportionality, not equality.

As with the velocity distribution, we need to normalise the function f such that∫∞
0 f(v)dv = 1. (Note that we integrate from zero because speed is the absolute value of

velocity and thus cannot be negative.)
∫ ∞

0
v2 e−mv

2/(2kBT ) dv =
1

4

√
π

[m/(2kBT )]3
, (26)

and thus we can write an equation for f(v) as

f(v) =
4√
π

(
m

2kBT

)3/2

v2 e−mv
2/(2kBT ). (27)

This very important result is the Maxwell-Boltzmann speed distribution. A graph is
shown in Figure 4.

Figure 4: The Maxwell-Boltzmann probability distribution. (Axis labels and lines to be added by the
student).

We can calculate the expected values of equation (27) as

〈v〉 =

∫ ∞

0
vf(v) dv =

√
8kBT

πm
, (28)

〈
v2
〉

=

∫ ∞

0
v2f(v) dv =

3kBT

m
. (29)

Note that
〈
v2x
〉

+
〈
v2y
〉

+
〈
v2z
〉

= 3
〈
v2j

〉
= 3kBT/m =

〈
v2
〉
, from equation (19).

Question: Calculate the mean 〈v〉 and root-mean-square
√
〈v2〉 velocity of an oxygen

molecule (O2) at room temperature (300 K).

3.2 The mean kinetic energy of a gas molecule

The mean kinetic energy of a molecule in the gas described above is 〈EKE〉 = 1
2m
〈
v2
〉
. Using

the result in equation (29) we can calculate that

〈EKE〉 =
3

2
kBT. (30)
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This equation states the the average kinetic energy of a molecule in a gas depends only on
the temperature of the gas.

The mean kinetic energy of a gas molecule is independent of its mass. It is directly
proportional to the temperature of the gas.

3.3 Pressure and the Ideal Gas law revisited

Consider a cubic box of gas, shown in Figure 5, with volume V = L3. The box is full of gasHRW
19-4 molecules with number density n (so there are N = nV molecules in the box). Each molecule

has a mass m and velocity v, and the distribution of these velocities is given by equations
(19), (20), and (21).

L

L

L

v
z
       y

        x

Figure 5: A cubic box filled with gas. One molecule of the gas is shown, with its velocity vector. The
edges are of length L.

We can assume that the particles don’t collide with each other; they only hit the walls.
Each time a molecule hits a wall, it undergoes a perfect elastic rebound. For example, if a
molecule that has velocity vbefore = (vx, vy, vz) hits the shaded wall in Figure 5, it rebounds
with velocity vafter = (−vx, vy, vz). In the process in imparts some momentum onto the wall.
The momentum imparted is m∆vx = 2mvx. Since the molecule doesn’t lose any speed in the
collision with the wall, it will return to the same wall every ∆t = 2L/vx.

Since force is given by F = d(momentum)/d(time), the force of one molecule on the
shaded wall is

F =
2mvx
2L/vx

=
mv2x
L

. (31)

To find the total force on the shaded wall, we must sum the forces of all the N molecules on
that wall:

Ftot =
N∑

i=1

m(v2x)i
L

, (32)
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but we can replace the sum with the total number of molecules times the mean-squared
velocity to give

Ftot =
m

L
N
〈
v2x
〉
. (33)

We can also use the following

• Pressure equals force divided by area. In this case, the area is L2.

• Since N is large and all three directions are equivalent, the mean-squared speed in any
one direction is one third the mean squared speed:

〈
v2x
〉

=
〈
v2
〉
/3.

Applying both these points gives

p =
mN

3L3

〈
v2
〉

=
mN

3V

〈
v2
〉
, (34)

a statistically derived expression for the pressure of a gas.

Finally, using our result from equation (29),
〈
v2
〉

= 3kBT/m, and rearranging gives

pV = NkBT, (35)

the Ideal Gas law!

To review the path that we took to this point:

1. We assumed a dilute gas with no intermolecular forces and no intermolecular collisions.

2. We used the idea that each molecule is coupled to the thermal reservoir of gas at
temperature T to derive a probability distribution for molecular energy.

3. We used this result to derive the probability distribution of molecular speed in the gas.

4. We calculated the mean-squared molecular speed.

5. We calculated the pressure exerted by the gas on the wall of a box in terms of the
frequency and momentum change of molecular collisions with the wall.

6. We used our expression for the mean-squared molecular speed to write the pressure in
terms of temperature.

And hence we derived, from first principles, the empirically known Ideal Gas equation.

3.4 The frequency of collisions and the mean free path

Molecules in a gas are not points of zero diameter, they are objects with finite size and hence
they sometimes collide. This has important consequences for molecular transport (diffusion), HRW

19-6as we shall see in the next lecture. Now we quantify occurrence of collisions. We assume that
collisions between molecules are perfectly elastic, like collisions between molecules and walls.
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1. Consider a molecule in a gas with speed v0 and cross-sectional area σ = πd2, where d is
the molecule radius. For now, assume that all the other molecules are not moving and
have zero diameter. As our molecule bounces around within the gas, it sweeps out a
(zigzag) cylindrical path behind it.

2. In a time ∆t, the molecule goes a distance v0∆t and thus sweeps through a volume of
σv0∆t.

3. The number of collisions per ∆t is equal to the number of other molecules that are in the
swept volume. For a gas with particle density n, this number is, on average, nσv0∆t.BB 8.1
Thus the mean frequency of collisions for our molecule is nσv0; the mean time between
collisions is τ0 = (nσv0)

−1.

4. The average distance travelled between collisions by the molecule that we are watching
is the mean free path λ0. For this one molecule the mean free path is its speed times
the time-interval between collisions: λ0 = v0τ0 = (nσ)−1.

5. However, we are interested in the mean free path for all molecules in the gas. In thatBB 8.3
case, we need the mean speed: λ = 〈v〉 τ .

6. Furthermore, we must substitute the mean time between collisions for all molecules
in the gas. In this case, all the molecules are moving, and the collision interval is
determined by the mean relative speed 〈vr〉 = 〈|vr|〉. In this case

vr = v1 − v2,

v2r = vr · vr = v21 + v22 − 2v1 · v2.

When we take the mean of v2r we must handle the cross term carefully:

〈v1 · v2〉 = 0 because 〈cos θ〉 = 0

where θ is the angle between the two velocity vectors. Since the vectors are independent
and can point in any direction, θ ranges from zero to π. The mean value of cos θ over
this interval is zero, so the cross term drops out and we have

〈
v2r
〉

=
〈
v21
〉

+
〈
v22
〉

= 2
〈
v2
〉
,

where the second equality is true because v1 and v2 are drawn from the same probability
distribution. We can then make two approximations∗:

〈vr〉 ≈
√
〈v2r 〉 ≈

√
2 〈v〉 .

From this we have τ ≈
(√

2nσ 〈v〉
)−1

, which we can substitute into λ = 〈v〉 τ to give

λ ≈ 1√
2nσ

, (36)

the (approximate) mean free path for all molecules in the gas.

∗recall that

〈vr〉 =

∫
vrf(vr)dv

while √
〈v2r〉 =

√∫
v2rf(vr)dv.
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7. We can use the Ideal Gas law pV = NkBT to put this into a more useful form (recall
that n = N/V )

λ ≈ kBT√
2pσ

. (37)

The mean free path in an ideal gas is directly proportional to the temperature and
indirectly proportional to the pressure of the gas.

In the next lecture, we will use this result to predict how energy and chemistry diffuse
through a gas.
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4 Kinetic theory III

In this lecture we explore how the motion of molecules within a gas gives rise to the
diffusion of energy, temperature, and chemical species. We derive a macroscopic diffusion
equation based on kinetic theory.

Recall that heat is defined as thermal energy in transit, and that the transport of energy
is caused by a spatial gradient in temperature. Below we will show how this occurs at the
molecular level in an ideal gas.

4.1 Aside: partial derivatives

A mathematical aside is required before we can discuss diffusion. This concerns a new notation
for derivatives. You are used to seeing derivatives of functions of one variable. For example,
for the function f(x) = sin(cx) with c constant, we can write

df

dx
= c cos(cx),

and we know that this derivative is the slope of the curve f(x). We have learned in this course
that we can also write this as

df = c cos(cx) dx.

You can read this as “an infinitessimal change in x leads to a change in f of size c cos(cx)dx.”

Often in physics, we need functions of more than one variable! We live in four dimensions,
and many things that we’re interested vary in all four. Consider temperature, for example:
it changes with height, with distance to the North, with distance to the East, and with time.
We could thus write T = T (x, y, z, t). We could then ask: what is the rate of change in
temperature with respect to time t? What is the rate of change of temperature with respect
to height z? And so forth. We write each of these derivatives with a different notation:

∂T

∂x
,
∂T

∂y
,
∂T

∂z
, and

∂T

∂t
.

These are called partial derivatives. They are just like regular derivatives, except for the
different symbol! We’ve simply replaced the symbol d with the symbol ∂ to emphasise that
T is a function of more than one variable.

Let’s consider an example. The surface elevation h over some landscape is a function of
distance East, which we’ll call x, and distance North, which we’ll call y. In fact, the landscape
is very simple, and its surface height (meters above sea level) is described by the equation

h(x, y) = 300 + 100 sin(2πx/L) cos(2πy/M). (38)

This function is plotted in Figure 6 for L = 10 and M = 6. If we were planning a walk
across this landscape, we might like to know its slope. Suppose that we expect to walk in the
x-direction, along the line AA’; what is the slope of this line? We use the partial derivative
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Figure 6: A plot of equation (38) representing the height of the landscape above sea level as a function
of distance to the East (x) and distance to the North (y), for L = 10 and M = 6. Lines AA’ and BB’
are thicker curves.

with respect to x to find out:

∂h

∂x
=

∂

∂x
[300 + 100 sin(2πx/L) cos(2πy/M)] ,

= 100 cos(2πy/M)
∂

∂x
sin(2πx/L),

=
200π

L
cos(2πy/M) cos(2πx/L).

Note that we treated cos(2πy/M) as a constant, even though y is a variable! The ∂
∂x tells us

that we are only considering the result of variations in x. Since we are interested in the line
AA’, which is at y = M , we can further calculate that

∂h

∂x

∣∣∣∣
y=6

=
200π

L
cos(2πx/L),

since cos(2π) = 1.

We can do the same for the y-direction:

∂h

∂y
=

∂

∂y
[300 + 100 sin(2πx/L) cos(2πy/M)] ,

= 100 sin(2πx/L)
∂

∂y
cos(2πy/M),

= −200π

M
cos(2πx/L) sin(2πy/M).

In this case, we treated cos(2πx/L) as a constant because the partial derivative was with
respect to y.

Question: What is the partial derivative of h from Equation 38 along the line BB’, at
x = 5.5?
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Question: Calculate the following derivatives

∂2h

∂x2
,

∂2h

∂y2
,

∂2h

∂x∂y

for h(x, y) as defined in Equation 38.

When writing the partial derivative of a function in which the variables are not indepen-
dent, it is sometimes neccessary to specify which variables are being held constant. For the
above example this was not neccessary because x and y are independent variables: a change
in x does not imply any change in y. In contrast, consider the ideal gas law, pV = nmRT .
Suppose we’re interested in the change of pressure with respect to temperature ∂p/∂T . Now
recall that Charles’ law states that V ∝ T . So should we incorporate that derivative too? For
clarity, we can write (

∂p

∂T

)

V

to indicate that the volume is being held constant. The result is (∂p/∂T )V = nmR/V , of
course. This corresponds to the case where the ideal gas is held within a rigid container of
constant volume.

Question: Calculate, for an ideal gas, (∂V/∂p)T . Describe the corresponding physical con-
ditions.

4.2 Thermal transport in an ideal gas

Consider an ideal gas with a linear gradient in temperature along the z-axis, as shown in
Figure 7. The flux of thermal energy, J goes from the region of higher temperature to theBB 9.2
region of lower temperature. We know that the average kinetic energy of a molecule in an
ideal gas is proportional to the temperature, so a gradient in temperature must be equivalent
to a gradient in kinetic energy, and therefore in mean molecular speed 〈v〉.

T=T2

T=T1

z

z

TT1 T2

T(z)

T2 >T1J

Figure 7: Thermal gradient in the z direction. The left panel shows the gas with temperature marked at
two levels. The heat flux J is downward, from hot to cold. The grey-scale corresponds to temperature,
with darker shades being colder. The right panel shows a plot of z versus temperature.
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It is the molecules of the gas that transport heat. As the molecules bounce around
randomly, higher KE molecules spread downward, and lower KE molecules spread upward.
To calculate J , we can make the following steps of logic.

1. Consider a gas molecule at height z and temperature T . Between collisions, that
molecule moves a distance that is the mean free path λ. In general, its velocity is
at an angle θ to the z-direction, and hence the vertical distance moved is λ cos θ (Fig.
8). It thus moves over a temperature difference

∆T = λ cos θ
dT

dz
.

z

θ λ
λcos θ

v

Figure 8: A schematic diagram showing the vertical transport distance λ cos θ for a single molecule in
the gas.

2. The excess (or deficit) of energy carried by the molecule as it moves is proportional to
∆T . The constant of proportionality is Cmolecule, the heat capacity of a single molecule.
Hence the excess energy transported by the molecule is

∆E = −Cmolecule∆T = −Cmoleculeλ cos θ
dT

dz
.

3. Recall that the distribution of molecular speeds is given by the Maxwell-Boltmann
distribution, f(v). The mean speed in the vertical direction is then the average∫∞
0 v cos θf(v) dv = 〈v〉 cos θ.

4. And, of course, there are many molecules doing the same thing. In fact, there is a
number density n of molecules.

5. Putting this all together, we can write down an expression for the thermal energy
transport per unit area and unit time as

J = −1

3
n 〈v〉λCmolecule

dT

dz

= −1

3
〈v〉λCV

dT

dz
, (39)

where CV = nCmolecule. To get rid of the cos2 θ, we have integrated with respect to θ
from zero to π to obtain the 1/3 in front (see BB 9.2 for details).
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Note that J is a heat flux and has units of energy/time/area (J s−1 m−2 = W m−2). We
can rewrite∗ it in terms of a thermal conductivity κ:

Jz = −κ∂T
∂z

. (40)

By comparison with equation (39) it is evident that for an ideal gas, κ = 〈v〉λCV /3.

Fourier’s law states that the rate of heat transport is proportional to the temperature
gradient and the diffusivity.

We can learn about thermal transport in an ideal gas by substituting our expressions for
λ and 〈v〉. Using equations (28) and (36) we obtain

κ ∝ Cmolecule
d2

(
kBT

m

)1/2

. (41)

So we predict that thermal conductivity of an ideal gas is proportional to
√
T and 1/(

√
md2).

Both of these predictions compare well with data, as shown in Figure 9.

(a)(a) (b)

Figure 9: Figures copied from BB 9.2. A comparison between experiments on thermal conductivity
of gasses and predictions from theory. (a) shows an approximately linear relationship between κ and
T 1/2 for various gasses. (b) shows an approximately linear relationship between κ and m−1/2d−2.
Both of these relationships are consistent with equation (41).

Thermal diffusivity in an ideal gas increases with temperature and mean free path of
the gas molecules.

4.3 Chemical diffusion

Now suppose that we’re interested in the transport of the molecules themselves, rather than
the energy they carry. For example, a spray of perfume is released in one corner of a roomBB 9.3
with still air at constant temperature; an Oxford student, standing in the opposite corner,

∗We use the partial derivative because in general, temperature can vary in three directions and in time, not
just in z, as with the example above.
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will eventually smell the perfume. The molecules travelled across the room by diffusion. How
does this work†?

Imagine that all the molecules are identical, and that the perfume molecules are marked
with a smell. The direction across the room is z and the number density of perfumed molecules
is n∗; the total number density is still n. According to kinetic theory, there is a flux of
perfumed molecules Φz in the z-direction,

Φz = −λ∂n
∗

∂z

∫ ∞

0
vf(v)dv

∫ π

0
cos2 θ

sin θ

2
dθ,

= −1

3
λ 〈v〉 ∂n

∗

∂z
, (42)

= −D∂n
∗

∂z
(Fick’s first law). (43)

with units m−2 s−1. This is analogous to equation (40) (the integral over θ is shown in
this case). The difference from equation (39), of course, is that we’re not tracking energy
transport, so there is no heat capacity factor. Still, the flux is proportional to the gradient
(∂n∗/∂z) times a coefficient; here D is the coefficient of self-diffusion.

Question: For an ideal gas, how does D depend on pressure p and temperature T?

z
dz

Rin = AΦz

Rout = A

�
Φz +

∂Φz

∂z
dz

�

N = n∗A dz

z0

z0 + dz

Figure 10: Slab of gas with area A and thickness dz. (When Φz > 0) there is a flux of perfumed
molecules into the slab at z = z0 and out of the slab at z = z0 + dz.

Now consider a slab of air that is perpendicular to the z-direction with thickness dz and
area A, as shown in Figure 10. As molecules diffuse, the total number of perfumed particles
in the slab is changing with time. At any given time, the number of molecules in the slab is
given by the quantity n∗Adz. The rate at which molecules are entering the slab is

Rin = AΦz, (44)

while the rate at which molecules are leaving the slab is

Rout = A

(
Φz +

∂Φz

∂z
dz

)
. (45)

†Download a fun, visual demonstration of molecular transport by Johannes Kottonau at
http://lsvr12.kanti-frauenfeld.ch/KOJ/Java/Diffusion.html

[The program requires a working installation of NetLogo, which is freely available and runs on a vari-
ety of platforms]

http://lsvr12.kanti-frauenfeld.ch/KOJ/Java/Diffusion.html
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The rate of change of the number of particles within the slab is equal to the net flux into the
slab:

∂

∂t
(n∗Adz) = Rin −Rout,

= −A∂Φz

∂z
dz.

Cancelling Adz on both sides gives

∂n∗

∂t
= −∂Φz

∂z
,

and, finally, substitution of equation (43) gives the one-dimensional‡ diffusion equation

∂n∗

∂t
= D

∂2n∗

∂z2
. (46)

The diffusion equation (also called Fick’s second law) states that the change in time of
the concentration of a diffusing species is proportional to the second derivative with respect

to position (the curvature) of the species concentration.

Often we are interested in the diffusion of a chemical within a liquid (or even a solid).
Although the Ideal Gas law doesn’t hold in such cases, the diffusion equation (46) is still
valid; in general, D must be determined empirically.

4.4 Thermal diffusion

Now we return to the transport of heat to talk about thermal diffusion. Recall equation (40),BB 10.1

Jz = −κ∂T
∂z

,

and note the similarity to equation (43). The flux of heat is proportional to the conductivity
times the temperature gradient. To derive a thermal diffusion equation, we must follow an
argument analogous to that above, for the rate of change of species number density. Consider
a slab with area A and thickness dz, as shown in Figure 10. Since J is a flux of heat, it will
change the total amount of energy in the slab. The total energy in the slab is given by

E = AρcPT dz.

‡In three dimensions, the diffusion equation is

∂n∗

∂t
= D∇2n∗,

where ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2
.
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The rate of change of the energy is given by the net flux of energy into or out of the slab.
Hence we can write

∂E

∂t
=

∂

∂t
(AρcPT dz) = Rin −Rout,

= AJz −A
(
Jz +

∂Jz
∂z

dz

)
,

= −A∂Jz
∂z

dz.

Using equation (40) and assuming that ρ and cP are constants gives the heat diffusion equa-
tion,

∂T

∂t
= D

∂2T

∂z2
, (47)

where the thermal diffusivity is defined as D = κ/(ρcP ). Just as for the coefficient of self-
diffusion in equation (43), the thermal diffusivity has units of m2 s−1. Compare equations
(46) and (47) and note their similarity.

The one-dimensional diffusion equation for the molecular transport of stuff has the
general form

∂

∂t
(stuff) = D

∂2

∂x2
(stuff),

where D is the diffusivity coefficient of stuff, with units of m−2 s−1.
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5 Classical thermodynamics I

Having developed an intuition (and a bunch of theory) for the microscopic processes that
underlie macroscopic thermodynamic variables, we come to Classical Thermodynamics, in
which we study how these variables are interrelated, and how they are constrained by physical
laws.

In this lecture We introduce the internal energy, which is the most important example of
a function of state. The internal energy is used to define the First law of thermodynamics.
This law is used as we revisit heat capacity and consider its value for an ideal gas. We then
explore the first law in the context of isothermal and adiabatic expansions of an ideal gas.
This leads us to reconsider our model of the isothermal atmosphere.

5.1 Internal energy

The most important quantity in classical thermodynamics is the internal energy U , which is
the sum of the energy of all the internal degrees of freedom that the system possesses. ForBB 11.2,

HRW
18-10

example, thermal energy contributes to the internal energy of a system, but potential energy
does not (a can of beans on top of a hill at temperature T has the same internal energy
as a can of beans with the same temperature at sea-level). For a monatomic ideal gas, the
only degree of freedom for a gas molecule is its speed, and so the molecular kinetic energy is
the only contribution to the internal energy. We know the mean kinetic energy of a single
molecule from equation (30), and so for N molecules we can write

U = N 〈EKE〉 =
3

2
nmRT, (ideal gas only) (48)

which applies to nm moles of an ideal monatomic gas.

5.1.1 Functions of state

The macroscopic properties of a thermodynamic system that is at equilibrium are called
functions of state. A function of state is a physical quantity that has a well-defined valueBB 11.1

HRW
18-9

for each equilibrium state of the system. Examples:

Extensive functions of state Internal energy, volume, mass.

Intensive functions of state Temperature, pressure, density, internal energy per mole.

Recall that extensive properties scale with the system size, while intensive properties do not.

Functions of state do NOT depend on the path taken to achieve that state. For example,
you can get to the same thermodynamic state of having warm hands by rubbing them together
(work) or by putting them near a fire (heat). As noted by BB 11.1, a toaster would also do
the trick (toasting).

Now let’s give a mathematical definition to a function of state. If a system is described
by a number of parameters x = (x1, x2, ...) then a function of state f is some function of
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those parameters f(x). Furthermore, for f to be a function of state, df must be an exact
differential. It must be true that

∆f =

∫ xb

xa

df = f(xb)− f(xa), (49)

that is, the change in the function of state must be given by the difference between its final
value and its initial value; the path taken does not matter.

5.2 The first law of thermodynamics

The internal energy of a system changes when heat Q or work W are added to the system
(or extracted from it). Once the internal energy has changed, however, it is impossible to
distinguish its source. This leads us to the first law

The first law of thermodynamics: Energy is conserved; heat and work are both forms
of energy.

This law means that there is a strict accounting for energy. The change in internal energy
of a system is given by the amount of added heat and work∗

dU = dQ+ dW. (50)

If a system is thermally isolated then dQ = 0, while if a system is in a rigid container, then
dW = 0. Note that both dQ and dW are inexact differentials.

Consider a frictionless piston with area A in a container of gas. To cause an infinitesimal
displacement of the piston dx requires a force F = pA, where p is the pressure of the gas.
This yields a volume change of the gas of dV = −Adx. We can then calculate the work as†

dW = Fdx = −pdV. (51)

Since the gas is being compressed, dV < 0; the negative sign in equation (51) thus insures
that dW > 0, consistent with the definition used in equation (50).

Since the amount of work done in this case is infinitesimally small, it is fine to assume
that p remains constant. If the amount of volume change is large, say ∆V = V2 − V1, then
we must integrate a series of infinitesimal steps

∆W = −
∫ V2

V1

pdV.

Because we are NOT integrating a function of state, this does NOT reduce to the difference
between the initial and final states. The integral is, in fact, path dependent. To evaluate

∗Note that HRW and BB use different notation for internal energy, and different sign convections for the
first law. HRW says that dEint = dQ − dW . HRW then defines dW = pdV , which is again opposite from
the convection adopted by BB. The two sign differences cancel, and the two books are consistent. We will
use the BB convention. If in doubt about which to use, just choose one, state it explicitly, and make sure it
is consistent with a change in internal energy in the first law.
†Again, note that the sign convection here is consistent with BB, and opposite that of HRW.
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it, we would need an equation of state (such as the Ideal Gas law) for the material being
compressed.

Furthermore, for equation (51) to hold, we must ensure that the application of force is
done reversibly. If we apply pressure very rapidly, it could cause shock-waves in the gas,
which would dissipate some of the force as heat, and hence the amount of work done would
be less than predicted by (51). We’ll study this in more detail later.

5.3 Application of the first law: heat capacity

With this understanding of internal energy, we can return to the concept of heat capacity
and define it with more rigour. Recall that heat capacity is the amount of heat dQ requiredBB 11.3
to change the temperature of a mass by an infinitesimal amount dT . Mathematically, C =
dQ/dT .

We can see from equations (50) and (51) that the internal energy will be a function of
temperature and volume, so we can write U = U(T, V ). Small changes in T and V can thus
drive small changes in U :

dU =

(
∂U

∂T

)

V

dT +

(
∂U

∂V

)

T

dV. (52)

Recall that the notation (
∂U

∂T

)

V

dT

means “for an infinitesimal change in temperature dT , the change in internal energy is given
by the rate of change of U with respect to T while holding volume constant times temperature
change dT .”

Combining equations (50) and (51) gives

dQ = dU + pdV, (53)

and combining that with (52) gives

dQ =

(
∂U

∂T

)

V

dT +

[(
∂U

∂V

)

T

+ p

]
dV. (54)

To get closer to an expression for the heat capacity, we divide both sides by the infinitesimal
change in temperature

dQ

dT
=

(
∂U

∂T

)

V

+

[(
∂U

∂V

)

T

+ p

]
dV

dT
. (55)

Now review (2) and recall that we require expressions for the heat capacity at constant
pressure and at constant volume. For the latter we write

CV =

(
∂Q

∂T

)

V

. (56)
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Looking back at equation (55), we see that setting dV = 0 removes the second term. Hence
we have

CV =

(
∂U

∂T

)

V

. (57)

In contrast, at constant pressure we have

Cp =

(
∂Q

∂T

)

p

, (58)

=

(
∂U

∂T

)

V

+

[(
∂U

∂V

)

T

+ p

](
∂V

∂T

)

p

. (59)

These heat capacities are measured in J K−1, whereas normally we will need to know the heat
capacity per mole (J K−1 mol−1), the heat capacity per volume (J K−1 m−3), or the specific
heat capacity c (J K−1 kg−1). For the latter, cV = CV /M and cp = Cp/M , where M is the
mass of the object that C refers to.

The adiabatic index γ = Cp/CV will be a useful quantity for later calculations.

5.3.1 Heat capacity of an ideal gas

For an ideal, monatomic gas, the internal energy is stored solely in the translational kinetic
energy of the molecules. Thus, using equation (30), we have U = NA 〈EKE〉 = 3

2RT per mole
(units of J mol−1; note that we have used NAkB = R). This means that for an ideal gas,
U = U(T ); it does not depend on volume and so

(
∂U

∂V

)

T

= 0. (60)

We can immediately find that

CV =

(
∂U

∂T

)

V

=

[
∂

∂T

(
3

2
RT

)]

V

=
3

2
R per mole. (61)

For one mole of ideal gas, nm = 1 and V = RT/p and thus

(
∂V

∂T

)

p

=
R

p
. (62)

Then, substituting equations (61), (60), and (62) into equation (59) gives

Cp = CV + (0 + p)
R

p
, (63a)

= CV +R, (63b)

=
3

2
R+R =

5

2
R per mole. (63c)

The adiabatic index for an ideal monatomic gas is thus γ = 5/3.
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Note that it is not generally true that dU = CdT ; the ideal gas (in particular, equa-
tion (60)) is a special case. In general,

dU = CV dT +

(
∂U

∂V

)

T

dV. (64)

An equation of state such as the Ideal Gas law is required to go beyond this equation.

5.4 Reversibility

The laws of physics are reversible, and so we would expect that physical processes are too.
Consider the molecules of a gas bouncing around within a container. A film of their motions,BB 12.1
played in reverse, would look equally plausible as the film played forward‡.

Now visit the kinetic simulation of diffusion at
http://lsvr12.kanti-frauenfeld.ch/KOJ/Java/Diffusion.html. Start the background
motion of molecules by clicking on “go/stop.” The motions and collisions of the particles
are reversible. Now click on “Release the perfume molecules” and watch what happens.
The perfumed molecules spread throughout the entire box, and their distribution reaches a
statistical steady state. It is plausible that they could spontaneously reassemble in the corner
where they started, but the probability that this could occur is vanishingly small. Diffusion is
an example of an irreversible process.

Consider a battery that drives a current I through a resistance R and dissipates heat
I2R. It never occurs that that heat is absorbed by the resistor, recharging the battery! Most
irreversible processes are like this: potential, chemical, or kinetic energy gets converted into
thermal energy that is dissipated into the environment. The energy cannot be restored, and
hence the (dissipative) process is irreversible.

Irreversibility arises from the dissipation of energy into the environment as heat. The
reason that energy is dissipated as heat is that this is by far the most probable outcome.

As an analogy, consider 100 coins, place head-side up in a box. The box is shaken vigor-
ously and then opened: of course the coins are now a mixture of heads and tails. Shaking the
box again, even in the exact reverse of the way it was first shaken, will not return the coins
to their original state of all heads. The reason is simply that the probability of this occurring
is 1/2100 ≈ 10−30.

So statistics seems to drive processes in an irreversible direction. So how can we achieve
reversibility (even if just in theory)? The answer is: very carefully.

Reversibility in a thermodynamic process is achieved by running the process sufficiently
slowly that the material remains in thermodynamic equilibrium at all times. Such a process

is said to be quasistatic.

Note that reversibility does not mean that heat cannot be absorbed or emitted by the
process. We will see that in the next section.

‡So what is the real direction of time? What is the difference between past and future? This question was
famously addressed by Richard Feynman in a lecture on physics to students at Cornell University in 1964.
Watch it here (Lecture 5):
http://research.microsoft.com/apps/tools/tuva/

http://lsvr12.kanti-frauenfeld.ch/KOJ/Java/Diffusion.html
http://research.microsoft.com/apps/tools/tuva/
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5.4.1 Application of the first law: reversible isothermal expansion of an ideal
gas

Isothermal means constant temperature. A reversible isothermal expansion is then an expan-
sion at constant temperature, i.e. one where ∆T = 0, that is performed reversibly, i.e. without
dissipation. BB 12.2

For an ideal gas, we showed above that dU = CV dT . Since dT = 0 for an isothermal
change, dU = 0. Then, from equation (50) we have

dW = −dQ. (65)

This means that the work done by the expansion of the gas is energetically equivalent to the
heat that is absorbed by the gas.

In an isothermal process, the heat absorbed is equal to the work done by the system, and
the temperature of the system doesn’t change.

We know that for an increment of reversible work, dW = −pdV . Hence we can calculate
the total amount of heat absorbed by one mole of gas during an isothermal expansion from
V1 to V2 at temperature T as:

∆Q =

∫
dQ, (66a)

= −
∫

dW, (66b)

=

∫ V2

V1

pdV, (66c)

=

∫ V2

V1

RT

V
dV, (66d)

= RT (lnV2 − lnV1) = RT ln
V2
V1

per mole. (66e)

Now since V2 > V1 we know that ∆Q > 0. In fact, exactly enough heat was absorbed by the
system to balance the expenditure of energy on doing work while keeping temperature fixed.

5.4.2 Application of the first law: adiabatic expansion of an ideal gas

An adiabatic expansion is both reversible and adiathermal. Adiathermal means “without flow BB 12.3,

HRW
18-11

of heat,” so an adiathermal system is said to be thermally isolated. Hence, for an adiabatic
expansion we have

dQ = 0. (67)

Then the first law states that
dU = dW. (68)

In an adiabatic process, there is no heat flow into or out of the system. The change in
internal energy of the system is due entirely to work done on or by the system.
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Into this equation we can substitute dU = CV dT , which is true for an ideal gas, and
dW = −pdV , which is true for a reversible change. For one mole of gas,

CV dT = −pdV (69a)

= −RT
V

dV. (69b)

Integrating this equation from (T1, V1) to (T2, V2) gives

ln
T2
T1

= − R

CV
ln
V2
V1
. (70)

From equation (63b), Cp = CV +R. Dividing by CV and rearranging gives −R/CV = 1− γ.
Equation equation (70) the becomes

ln
T2
T1

= (1− γ) ln
V2
V1
. (71)

Exponentiating both sides we find that

T2
T1

=

(
V1
V2

)γ−1
, (72)

or
T2V

γ−1
2 = T1V

γ−1
1 = TV γ−1 = constant. (73)

Figure 11: Comparison of decompression paths under adiabatic and isothermal conditions. (Axis
labels and lines to be added by the student).

Finally, we can use T ∝ pV from the Ideal Gas law to rewrite equation (73) as

pV γ = constant. (74)

This tells us that if we start with a gas at some initial pressure and volume and then allow
it to expand adiabatically, the final pressure and volume will be related to the initial one by
equation (74); the temperature can be determined with the Ideal Gas law. Figure 11 shows
a comparison between adiabatic and isothermal decompression of an ideal gas for the same
initial conditions.
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5.5 Geophysical application: adiabatic atmosphere

We can extend our model of the atmosphere (notes 2.4) by using results on adiabatic expan-
sion. The hydrostatic equation for the atmosphere isBB 12.4

dp = −ρgdz, (75)

which states that over an increment of height in the atmosphere, the pressure decreases by
the mass per unit area within that increment. We’re interested in finding the integral of this
equation, but we don’t yet know how density ρ varies with height.

Begin by recalling that p = nkBT and ρ = nm, where m is the mass of one molecule. Com-
bining these two gives ρ = mp/(kBT ), and plugging this into equation (75) and rearranging
gives

T
dp

p
= −mg

kB
dz. (76)

For an isothermal atmosphere, T is constant and we can integrate this equation immediately
for p(z). We know that T varies with height, however, so as a better approximation, we could
assume that parcels of air move through the atmosphere without exchanging heat with their
neighbours, dQ = 0. So if a parcel rises, it expands adiabatically.

We have learnt that for an ideal gas undergoing an adiabatic processes, pV γ is a constant.
Using the Ideal Gas law (pV ∝ T ), we can rewrite this as p1−γT γ = constant and differentiate
to give

(1− γ)
dp

p
+ γ

dT

T
= 0. (77)

Substituting this into equation (76) gives

dT

dz
= −γ − 1

γ

mg

kB
. (78)

This equation predicts a linear thermal gradient with height. We can simplify it by substi-
tuting (γ−1)/γ = R/Cp and using R = kBNA and writing the molar mass as Mmolar = mNA

to give
dT

dz
= −Mmolarg

Cp
. (79)

The quantity Mmolarg/Cp is the adiabatic lapse rate. For dry air it is about 10 K/km,
though for the real atmosphere (which is humid), it is measured at about 6-7 K/km.

Question: What is T (z) for the atmosphere, assuming a lapse rate of 6.5 and T (0) = 288
K?
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6 Classical thermodynamics II

In this lecture We introduce the concept of an engine that converts heat into work. We
show that the Carnot engine is the most efficient such engine, but that it does not achieve
100% efficiency. We then generalise this result to the Second law of thermodynamics. We
reexamine the Carnot engine and derive a new and useful function of state.

6.1 The Carnot engine

We have seen in the last lecture that heat and work are both forms of energy that can be
added or taken away from a thermodynamic system. Since this is the case, it should be
possible to make a machine that converts heat into work; such a machine is called an engine,
of which the Carnot engine is the simplest example.BB 13.2,

HRW
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Ideally, we’d like to put some amount of heat Q into the machine and get out an equivalent
amount of work W , such that Q = W . This engine would be perfect in the sense that it would
not waste any heat. Unfortunately, however, a perfect engine is physically impossible.

Carnot

Qh

Qc

Th

Tc

W

Hot reservoir

Cold reservoir

Figure 12: A schematic diagram of the Carnot engine. Heat flows into the gas piston from the hot
reservoir and out to the cold reservoir. The piston does work. Variables Qh, Qc, and W represent
magnitudes of the heat input, heat output, and work output, respectively, and are thus all greater
than zero.

The Carnot engine is physically possible and now we consider it in detail. The process
consists of a four-part, cyclical path. Two parts are isotherms (at temperatures Th and Tc),
and two parts are adiabats (connecting Th to Tc and vice versa). Although the cycle is a
theoretical construct, you can imagine it as a gas within a piston that is coupled to a hot
reservoir (at Th) and a cold reservoir (at Tc), as shown in Figure 12.

This is shown in Figure 13.

In detail, the four parts of the Carnot cycle are:

A→B In the first stage of a Carnot cycle, the gas is at temperature Th; heat Qh enters the
system from the hot reservoir and drives an isothermal volume-expansion (VA → VB).
The piston goes from its initial, fully compressed position to a partially extended one.
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Figure 13: The Carnot cycle shown in pressure-volume space. (Axis labels and lines to be added by
the student).

For one mole of an ideal monatomic gas, we can write

Qh = RTh ln
VB
VA

. (80a)

B→C The second stage is an adiabatic expansion, so no heat enters or leaves the system, but
the pressure and volume change along an adiabatic curve. At the end of this adiabatic
change (VB → VC), the volume is at its maximum (the piston is fully extended) and the
temperature has been reduced to Tc. We can write

Th
Tc

=

(
VC
VB

)γ−1
. (80b)

C→D In the third stage, the gas is compressed (VC → VD) isothermally at temperature Tc;
heat Qc flows out of the system into the cold reservoir. This allows the piston to return
part of the way to its original position. For this stage we can write∗

Qc = RTc ln
VC
VD

. (80c)

D→A The final step of the cycle takes the piston back to its original, fully compressed
position. This stage is an adiabatic compression (VD → VA), thus there is no exchange
of heat with the reservoirs. The gas is compressed, so its pressure increases. The
temperature of the gas increases from Tc to Th. We can write

Tc
Th

=

(
VA
VD

)γ−1
. (80d)

Combining equations (80b) and (80d) gives

VB
VA

=
VC
VD

. (81)

Dividing equation (80a) by equation (80c) and substituting equation (81) then gives

Qh
Qc

=
Th
Tc
, (82)

∗Note that we have inverted the fraction VD/VC in this equation. The reason is that we want the magnitude
of the heat output, Qc, which should be a positive quantity.
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which will be useful below.

Question: How does the Carnot cycle look on a plot of temperature vs. pressure? How does
it look on a plot of temperature vs. volume?

6.1.1 Efficiency of the Carnot cycle

Because the Carnot process is cyclic, the internal energy (a function of state) returns to its
initial value after each cycle. There is a net output of work done in each cycle. To find the
net work, we could do the integral

W =

∫

A→B→C→D→A
dW = −

∮
pdV, (83)

for the area within the cycle in Figure 13 (the special integration symbol
∮

signifies integration
around a closed loop). Another approach is to equate the net work done with the net heat
added to the system (since ∆U = 0 over the cycle). For the Carnot cycle,

W = Qnet = Qh −Qc. (84)

Recall that the perfect engine is 100% efficient: it converts all the heat added to the
system Qh into work W such that the efficiency ηperfect = W/Qh = 1. In reality, for a Carnot
engine,

ηCarnot =
W

Qh
=
Qh −Qc
Qh

, (85)

and using equation (82),

ηCarnot =
Th − Tc
Th

= 1− Tc
Th
. (86)

Hence the efficiency of a Carnot engine is less than 100%. Real engines are much less efficient
than Carnot engines.

Question: Why are real engines less efficient than Carnot engines?

It turns out that the Carnot engine is the most efficient heat engine that can exist, hence
ηCarnot is an upper limit on the efficiency of a heat engine. (This is proven in BB 13.3 but
is not required knowledge for the course.)

Carnot’s theorem: Of all the heat engines working between two given temperatures, none
is more efficient than a Carnot engine. All cycles composed of reversible processes have the

same efficiency as the Carnot cycle.

Question: What is a Stirling engine? How does it look on a p-V plot?HRW
20-5

6.2 The second law of thermodynamics

Having studied the example of a Carnot engine, we can generalise and state the second lawBB 13.1
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The second law of thermodynamics:
(Clausius’) No process is possible whose sole result is the transfer of heat from a colder

body to a hotter body;
or

(Kelvin’s) No process is possible whose sole result is the complete conversion of heat into
work.

Although these sound like different statements, they are actually equivalent. Another
equivalent statement would be “no engine can be 100% efficient.”

For reasons discussed above in the section on reversibility, heat always flows from high
temperatures to low temperatures. The second law states that this must be the case in all
isolated processes.

We can show that Clausius’ and Kelvin’s statements are equivalent by showing that if a
system violates one, it violates the other.

(a)

Th

Tc

Hot reservoir

Cold reservoir

Carnot

Qh

Qc

(b)

Th

Tc

Hot reservoir

Cold reservoir

Carnot

Qh

Qc

Figure 14: a Schematic diagram of a Kelvin violator connected to a Carnot engine (to be completed
by the student). (b) Schematic diagram of a Clausius violator connected to a Carnot engine (to be
completed by the student).

• First consider a machine that violates Kelvin’s statement of the second law (a “Kelvin
violator”). This machine is an engine with the sole result of complete conversion of heat
into work: Q′h = W . You can connect this engine with a Carnot engine as shown in
Figure 14a. The work W drives the Carnot engine in reverse, allowing it to pump heat
from the cold reservoir to the hot reservoir. Equation (84) says that W = Qh − Qc;
equating this with the work from the Kelvin violator gives Qc = Qh −Q′h. This means
that the combined Carnot-Kelvin violator machine has the sole result of pumping Qc
heat from the cold reservoir to the hot reservoir. This violates Clausius’ statement of
the second law.

• Now consider a machine that violates Clausius’ statement of the second law (a “Clausius
violator”). This machine has the sole result of pumping heat Qc from the cold reservoir
to the hot reservoir. It is connected with a Carnot engine in Figure 14b. Evidently,
the net heat lost from the hot reservoir is Qh − Qc, while the net heat lost from the
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cold reservoir is zero. Hence, the combined Carnot-Clausius violator machine has the
sole result is the complete conversion of heat Qh −Qc into work. This violates Kelvin’s
statement of the second law.

Hence we have shown the equivalence of Kelvin’s and Clausius’ statements of the second law
of thermodynamics.

6.3 Clausius’ theorem

Recall that for the Carnot cycle, the amount of heat that leaves the cycle Qc is different from
the amount of heat that enters it Qh, thus heat is not conserved and Q is not a function of
state (as we already knew). However, we found that for the Carnot cycleBB 13.7

Qh
Qc

=
Th
Tc

(87)

and this motivates us to consider a new quantity that turns out to be very important in
thermodynamics: the ratio of heat input to temperature at which it is input. For the Carnot
cycle we have ∑

cycle

∆Q

T
=
Qh
Th

+
−Qc
Tc

= 0. (88)

We could take each heat addition as being the integral of an infinite number of infinitessimal
additions dQ and write equation (88) as an integral

∮
dQ

T
= 0. (89)

The Carnot cycle is an idealised process in that it is perfectly reversible. In reality, no
process is perfectly reversible. As we learned above (section 5.4), in irreversible processes some
heat is dissipated. Thus we can modify equation (89) to accomodate irreversible processes by
writing ∮

dQ

T
≤ 0, (90)

where the equality only holds if the cycle is reversible. We can now write Clausius’ theorem.

Clausius’ theorem: For any closed cycle,
∮

dQ/T ≤ 0, where equality neccessarily holds
for a reversible cycle.
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7 Classical thermodynamics III

In this lecture In this lecture we introduce the concept of entropy and give it several com-
plementary definitions. We examine the question of reversibility in thermodynamic processes,
and consider the causes and consequences of irreversibility. Finally, we use our understanding
of entropy to reexamine the first law of thermodynamics, and to model the thermal gradient
of rock in the mantle.

7.1 A definition of Entropy
BB 14.1

In the last lecture we studied the quantity dQ/T and found that for a reversible process

∮
dQ

T
= 0.

This tells us that the integral is path independent and that dQ/T is an exact differential of
a function of state.

This new function of state is called entropy and is defined by

dS =
dQrev

T
, (91)

such that ∫ B

A

dQrev

T
=

∫ B

A
dS = S(B)− S(A). (92)

Entropy is a function of state whose exact differential is the ratio of a reversible input of
heat dQrev to the temperature T at which that input occurs.

Recall that an adiabatic process is thermally isolated and hence dQrev = 0. This means
that there is no change in entropy during an adiabatic process, and so an adiabatic process
is also isentropic.

7.1.1 Entropy in the Carnot cycle

Another way to visualise the Carnot cycle is to plot it in terms of temperature vs. entropy
S. We’ll go into more detail about entropy below, but for now, just remember the entropy
is constant along an adiabatic path. Hence we have two isothermal paths and two isentropic
paths, as shown in Figure 15.

7.2 Irreversible changes and entropy

Recall from Clausius’ theorem that
∮

dQ/T ≤ 0 where the equality only holds if the process
is reversible. Suppose that a cycle is composed of two steps: BB 14.2

A→ B : irreversible,

B→ A : reversible.
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Figure 15: The Carnot cycle shown in temperature-entropy space. (Axis labels and lines to be added
by the student).

This cycle is, overall, irreversible. Hence we write

∮
dQ

T
≤ 0

∫ B

A

dQ

T
+

∫ A

B

dQrev

T
≤ 0, (93)

and we can rearrange to give ∫ B

A

dQrev

T
≥
∫ B

A

dQ

T
(94)

(note that the limits of the integration for the reversible integral have been switched).

We are free to shrink the cycle until it is arbitrarily (infinitessimally) small, and so we
can rewrite equation (94) as

dS =
dQrev

T
≥ dQ

T
. (95)

This equation states that the increase in entropy for a process is always at least as big as the
heat added divided by the temperature at which it is added.

Furthermore, we can consider a thermally isolated system where dQ = 0. For reversible
changes within this system dS = 0, however for any irreversible change,

dS ≥ 0. (96)

This is an extremely profound result. It states that the entropy of a thermally isolated
system can only increase. Suppose that the system is the Universe; equation (96) says that
the entropy of the Universe can only increase with time. This sounds dangerous... what is
entropy, physically?

Second law, incognito: the entropy of the Universe is always increasing (as is the entropy
of any thermally isolated system that undergoes irreversible processes).

7.3 Entropy in kinetic theory

For a physical picture we return to kinetic theory, and to the ideal gas. Consider a thermallyHRW
20-8 isolated, rigid box of gas with two volumetrically equal halves, L and R. The box contains N



Lecture 7: Classical thermodynamics III 45

gas molecules, numbered one through N , each of which can be in either L or R at any given
moment.

At any given instant there are NL molecules in volume L and NR molecules in volume R,
such that NL + NR = N , the total number of molecules. This is a case of microstates and
macrostates∗, as we explored in lecture 2 (section 2.1). Each possible distribution of molecules
1 through N is a microstate. There are 2N microstates, but only N + 1 macrostates. The
macrostates, in terms of (NL, NR), are

(N, 0), (N − 1, 1), ..., (0, N).

Recall that each macrostate has a different probability because each macrostate corre-
sponds to a different number of microstates. For example, the macrostate with all the
molecules in one half of the box (N, 0) corresponds to only one microstate, and thus has
a very low probability. In our example, the number of microstates that corresponds with a
macrostate (NL, NR) is

Ω =
N !

NL!NR!
, (97)

and this quantity is called the multiplicity. The probability of being in a macrostate i :
(N − i, i) is then given by

Pi =
multiplicity of i

total # of microstates
=

Ωi

2N
. (98)

For very large N the number of microstates N is enormous, but most of them correspond
to the macrostate i = N/2, so the system spends most of its time with half the molecules on
one side of the box and half on the other side. This is consistent with what we learned in
lecture 2: the system seeks the macrostate with the largest number of microstates. It is also
true that the system seeks the state with the largest entropy. In fact, the entropy of a gas is
defined as

S = kB ln Ω. (99)

This equation states that the entropy of a gas is proportional to the logarithm of the number
of microstates corresponding to its macrostate.

You can think of entropy as being a measure of disorder. For our example: a state where
all the molecules of gas are in L is highly ordered and hence has low entropy, while a state
where some randomly chosen molecules are in R is less ordered and has higher entropy. The
most disordered state has half the molecules in each half of the box, and thus has the highest
entropy.

Entropy is a measure of the disorder of a system, in terms of the number of microstates
that correspond to its observed macrostate. Systems tend to exist in the highest-entropy

(most disordered) state that is available.

∗In HRW, macrostates are called configurations.
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7.4 Entropy, internal energy, and the first law

Armed with our new concept of entropy, we can reconsider the first law of thermodynamics,
which is

dU = dQ+ dW. (100)

For a reversible change we have the definition of entropy

dQ = TdS

and that of work
dW = −pdV.

Combining these three equations we find that

dU = TdS − pdV. (101)

This equation states that changes in internal energy are caused by changes in entropy and
changes in volume (or density). We can see from this that the natural variables that control
U are S and V , hence we can write U = U(S, V ). From this definition we can take the total
differential of U and compare it with equation (101):

dU =

(
∂U

∂S

)

V

dS +

(
∂U

∂V

)

S

dV, (102)

= TdS − pdV. (103)

Hence we can see that temperature and pressure can be interpreted in a new way:

T =

(
∂U

∂S

)

V

, (104)

p = −
(
∂U

∂V

)

S

. (105)

This says that temperature is the rate of change of internal energy with entropy at constant
volume, and that pressure is minus the rate of change of internal energy with volume at
constant entropy. Clear? Not really... but sometimes useful.

Going back to equation (101), we can make another important observation that pertains
to irreversible processes. For an irreversible process,

irrev: dQ ≤ TdS and dW ≥ −pdV.

Fortunately, the amount that each of these differs from the reversible limit is the same, so the
differences cancel out. Equation (101) applies even for irreversible processes.

The first law revisited: Energy is conserved; heat and work are both forms of energy;
and all of this can be accounted for with the simple formula dU = TdS − pdV, which holds

for reversible and irreversible changes.
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7.4.1 Entropy: kinetic & classical

Let’s rewrite equation (104) as
1

T
=

(
∂S

∂U

)

V

, (106)

and rearranging equation (11) slightly gives

1

T
=

d(kB ln Ω)

dE
. (107)

Comparing these two equations (while squinting) leads us, again, to the definition of entropy,

S = kB ln Ω.

Joy!

7.5 Geophysical application: adiabatic mantle

As you may have learned in another lecture, the rock in the Earth’s mantle is convecting slowly
but inexorably, and this leads to plate tectonics. It also leads to melting and volcanism. To
address these latter topics, thermodynamics is an essential tool. For example, what are the
thermal conditions in the mantle where melting occurs?

As you will learn in more detail in your lectures on Planet Earth, mantle convection is
vigorous. Flow of rock in the mantle occurs at a rate that is of order 10 cm/year, about the
same rate that your fingernails grow. However, relative to this slow creeping flow, diffusion
of heat is even slower. Hence we say that mantle convection is vigorous. We can also then
assume that flow in most places in the mantle is adiabatic, because it occurs without (much)
diffusion of heat.

Recall that an adiabatic process is also isentropic. Entropy thus provides a starting point
for our study of temperature in the convecting mantle.

More advanced thermodynamics tells us that entropy S can be written as a function of
pressure and temperature: S = S(p, T ); its total differential is then

dS =

(
∂S

∂T

)

p

dT +

(
∂S

∂p

)

T

dp. (108)

We can then use an equality that you will derive in MMES problem set 8, (∂S/∂p)T =
−(∂V/∂T )p, to substitute into equation (108) to obtain

dS =

(
∂S

∂T

)

p

dT −
(
∂V

∂T

)

p

dp. (109)

To simplify this further, we need to make a couple of asides.
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Aside: specific heat Recall that the specific heat capacity is given in equation (2) as

cp =
1

M

(
∂Q

∂T

)

p

,

where the units of cP are J K−1 kg−1. Note that for a reversible change, we can substitute
our definition of entropy dQ = TdS and rearrange to obtain

cpM

T
=

(
∂S

∂T

)

p

. (110)

Aside: thermal expansion You may already know that solids expand when you heat
them. A solid with initial volume V0 at temperature T0 will expand nearly linearly with
temperature. This can be written

V (T ) =
M

ρ
[1 + α(T − T0)], (111)

such that when T = T0, V = M/ρ. The constant α is called the coefficient of thermal
expansion; ρ is the density of mantle rock. We can use this to evaluate the partial derivative
in equation (109), (

∂V

∂T

)

p

=
αM

ρ
. (112)

Now we can return to equation (109) and substitute equations (110) and (112). This gives

dS =
cpM

T
dT − αM

ρ
dp. (113)

Then, dividing both sides by mass M and writing the specific entropy as s = S/M we have

ds =
cp
T

dT − α

ρ
dp. (114)

Now let’s recall our earlier statement about mantle convection: it is isentropic. We can
therefore set ds = 0 and rearrange equation (114) to read

(
dT

dp

)

s

=
αT

ρcP
. (115)

Finally, writing z for depth in the mantle, we can write the change in pressure with depth as
(dp/dz) = ρg and substitute to obtain

(
dT

dz

)

s

=

(
dT

dp

)

s

dp

dz

=
αgT

cP
. (116)

Taking values representative of the shallow mantle (T = 1600 K, α = 3 × 10−5 K−1, cP = 1
kJ kg−1 K−1, and g = 10 m s−2) gives a value for the adiabatic temperature gradient in the
mantle of (dT/dz)s = 0.5 K km−1.
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Figure 16: Temperature as a function of depth through the Earth. (Axis labels and lines to be added
by the student).

We can integrate equation (116) with respect to z to obtain T (z) in the mantle

T (z) = T (0) eαgz/cP , (117)

where T (0) is value the mantle temperature would have if if could rise adiabatically all the
way to the surface of the Earth (which is clearly impossible). Nonetheless, T (0) is such a
useful quantity that we give it a special name, the mantle potential temperature. A plot of
T (z) is shown in Figure 16.

The mantle potential temperature is the temperature that a parcel of mantle would
have if it were brought to the surface adiabatically.
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8 Classical thermodynamics IV

In this lecture we consider phase changes of pure substances (such as H2O). We quantify
the latent heat, the amount of energy required to convert between phases. We then discuss
the concept of phase diagrams, which map out the conditions under which various phases
are stable. Finally, we consider the Clausius-Clapeyron equation, a quantitative model of the
boundaries between these regions of stability.

8.1 Latent heat and phase transitions

Water freezes and boils, solid CO2 (dry ice) sublimes, solid metals can be melted; these are all
examples of phase transitions. We know from experience that phase transitions occur whenBB 28.1,

HRW
18-8

a material reaches a certain temperature; for example, water boils at 100oC. To change the
temperature of a substance requires supplying it with sufficient heat to increase the entropy,
as we saw in the last lecture. This is quantified by the heat capacity,

Cx = T

(
∂S

∂T

)

x

, (118)

where x is the quantity that is held constant (e.g. p or V ).

Now suppose that our thermodynamic system is composed of water and steam, in equi-
librium at constant pressure and at Tb = 100oC. To convert water to steam requires that
we supply extra heat ∆Q to overcome the difference in entropy between the two phases. This
extra heat is known as the latent heat and is defined by

L = ∆Q = TbSsteam − TbSwater = Tb∆S. (119)

So in a plot of S vs. T , as shown in Figure 17, the slope of the line for T < Tb is
proportional to the specific heat capacity of liquid water. For T > Tb the slope is proportional
to the specific heat capacity of steam. At T = Tb, the entropy changes discontinuously over
a jump ∆S = L/Tb.

Figure 17: Entropy as a function of temperature for a water–steam system in thermodynamic equilib-
rium at constant pressure. (Axis labels and lines to be added by the student).

The latent heat associated with a phase transition is the amount of heat that must be
supplied to (or extracted from) the system to convert material from one phase to another.
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8.1.1 Latent heat of vaporisation for an ideal gas

In general, the latent heat for different materials is empirically known—it is obtained by
carefully measured experiments. For the case of an ideal gas, we can make a theoretical
estimate.

First we must assume that the number of microstates Ω available to a gas molecule is
proportional to the system volume∗ V . With this assumption, we can write, for one mole of
vapour and one mole of liquid,

Ωvapour

Ωliquid
=

(
Vvapour
Vliquid

)NA

, (120)

=

(
ρliquid
ρvapour

)NA

, (121)

≈
(
103
)NA , (122)

since the density of the vapour is roughly 103 times smaller than the density of the liquid.

Now recall that S = kB ln Ω, and so we can calculate that

∆S = ∆(kB ln Ω) = kB ln
(
103
)NA = R ln

(
103
)
≈ 7R. (123)

This result allows us to estimate the latent heat as

L = Tb∆S ≈ 7RTb. (124)

This relationship is known as Trouton’s rule, and is reasonably accurate for a range of gasses.

8.2 Phase diagrams

Phase diagrams are an important tool used in Earth Sciences where phase changes are im-
portant (i.e. almost everywhere). They represent graphically the phases that can be present
at a given set of conditions. For example, given the pressure and temperature of a pure H2O
system, a phase diagram allows us to determine which of the solid, liquid and vapour phases
of H2O should coexist in equilibrium.

A phase diagram for H2O is shown in Figure 18. Pressure increases on the y-axis and BB 28.3
temperature on the x-axis. The conditions that we are most familiar with are atmospheric
pressure over a range of temperatures from less than 0oC to greater than 100oC. These
conditions lie along a horizontal line in the diagram.

A thermodynamic system with pressure of 1 bar (1 atm) and temperature of 200 K
sits within the solid field on this plot, and hence we expect to find only solid H2O in our
thermodynamic system under those conditions. A thermodynamic system with pressure of 1
bar and temperature of 500 K, in contrast, would be entirely gas (water vapour). At 1 bar
and 273 K, the system would plot exactly on the boundary between solid and liquid, and
hence we could find both phases present under those conditions.

∗This assumption can be proven rigorously with more advanced kinetic theory.
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Figure 18: The phase diagram of H2O copied from BB 28.3. Open circles indicate the freezing and
boiling points of water at atmospheric pressure.

Notice that with decreasing pressure, there is a decreasing range of temperatures in which
the liquid phase is stable. At a pressure of 6.12× 10−3 bars and a temperature of 273.16 K,
this range is zero and the system is on a triple point. At the triple point, all three phases can
coexist†. For pressures below the triple point, liquid water is not stable at any temperature.
In this case, supplying heat to a system on the solid–vapour boundary leads to phase change
by sublimation.

Finally, following the liquid–vapour phase boundary upwards in pressure and temperature,
eventually the critical point is reached. Beyond this point, there is no sharp physical (i.e.
entropic) difference between gas and liquid; they grade smoothly into each other‡.

A phase diagram is a plot of the boundaries between different phases of a material. The
point where two phase boundaries join together is called a triple point. The point where a

lone phase boundary terminates is called a critical point.

8.3 The Clausius-Clapeyron equation

Thermodynamic theory can be used to predict the slope of the lines on a phase diagram. The
derivation relies on advanced topics, but the result is straightforward

dp

dT
=
S2 − S1
V2 − V1

, (125)

where the subscript on entropy S and volume V refers to each of the phases present. Since
L = T∆S,

dp

dT
=

L

T (V2 − V1)
. (126)

†You can watch a video of an experiment on Tert-Butyl Alcohol at its triple point at 0.06 atm pressure on
YouTube:
http://www.youtube.com/watch?v=BLRqpJN9zeA
‡For a good time with supercritical fluids, dial http://www.youtube.com/watch?v=yBRdBrnIlTQ

http://www.youtube.com/watch?v=BLRqpJN9zeA
http://www.youtube.com/watch?v=yBRdBrnIlTQ
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This is the Clausius-Clapeyron equation. It says that the slope of the phase boundary in p-T
space is entirely determined by the latent heat, the temperature at the phase boundary, and
the difference in volume (density) between the two phases.

The Clausius-Clapeyron equation states that the slope of a phase boundary in p-T
space is determined by the latent heat of the phase change, the temperature at the phase

boundary, and the difference in density of the two phases.

8.3.1 Phase boundary for a liquid ↔ ideal gas transition

We can easily calculate the phase boundary between a liquid and an ideal gas by assuming
that the latent heat L is a constant, independent of temperature. Also, we assume that the
volume of the gas is much greater than that of the liquid, V � Vliq. For one mole of ideal gas
pV = RT , and we can write

dp

dT
=

L

TV
, (127)

=
Lp

RT 2
, (128)

dp

p
=
LdT

RT 2
. (129)

Integrating equation (129) and rearranging we obtain

p(T ) = p0 e−L/(RT ). (130)

If we know a point on the phase boundary empirically, we can determine p0 and hence plot
the curve, as shown in Figure 19.

Figure 19: The phase diagram of a hypothetical pure substance. (Axis labels and lines to be added
by the student).

8.3.2 Phase boundary for a solid ↔ liquid transition

For a solid–liquid phase transition, the change in volume ∆V is nearly constant. The Clausius-
Clapeyron equation can be rearranged to give

dp =
LdT

T∆V
, (131)
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which can be integrated assuming constant L to obtain

p = p0 +
L

∆V
ln

(
T

T0

)
, (132)

where (p0, T0) is a point on the solid–liquid phase boundary. Because ∆V is very small, the
phase boundary in the p-T plane is very steep. This is evident in Figure 19.

Question: Would you expect the slope of the solid–liquid phase boundary to be positive or
negative for most pure substances? What about for water?
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Summary of key equations and concepts

Ideal gas law Equation of state for a dilute gas without intermolecular forces

pV = NkBT, or p = nkBT, or pV = nmRT,

where p is pressure, V is volume, N is the number of molecules, kB is the Boltzmann
constant, T is temperature, n = N/V is the number density of molecules, nm is the
number of moles of molecules, and R is the Universal Gas Constant.

Heat capacity Proportionality between heat added to an object and change in temperature
of the object.

Cx =

(
dQ

dT

)

x

where dQ is an infinitessimal addition of heat, dT is an infinitessimal change in tem-
perature, x is the quantity held constant, either p or V . The specific heat capacity is C
per mass of object, hence

cx =
1

M

(
dQ

dT

)

x

.

Definition of temperature This formula gives rigorous meaning to the temperature.

1

kBT
=

d ln Ω

dE
,

where Ω is the multiplicity: the number of microstates corresponding to the observed
macrostate of the system.

Boltzmann distribution Is the probability distribution for the energy of a molecule that
is coupled to a large reservoir (e.g. a gas at temperature T )

P (ε) = Ae−ε/(kBT ),

where A is a constant, and ε is the energy of the molecule.

Maxwell-Boltzmann distribution Probability distribution of molecular speed in a gas at
temperature T

P (v) =
4√
π

(
m

2kBT

)3/2

v2 exp

(
−mv2

2kBT

)
,

where m is the mass of a single molecule and v is the speed.

Mean kinetic energy The average kinetic energy of a molecule in a gas at temperature T ,

〈EKE〉 =
3

2
kBT.

Mean free path The average distance that a molecule in a gas travels between collisions

λ =
(√

2nσ
)−1

,

where σ is the molecular cross-sectional area.
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Conduction and diffusion The flux of heat through a gas in the x-direction is given by

Jx = −κ∂T
∂x

,

where κ is the thermal conductivity. The diffusion equation in the x-direction is

∂T

∂t
= D

∂2T

∂x2
,

where D is the diffusivity. For chemical diffusion, these are given by

Φx = −D∂n
∗

∂x
, and

∂n∗

∂t
= D

∂2n∗

∂x2
,

where n∗ is the number density of the diffusing molecules.

Function of state A variable describing a system in thermodynamic equilibrium that is
path-independent. For a change from state a to state b it has the property

∆f =

∫ xb

xa

df = f(xb)− f(xa),

where x is a list of system paramters describing the state (e.g. pressure, temperature,
etc). df must be an exact differential.

First law of thermodynamics Energy is conserved; heat and work are both forms of en-
ergy

dU = dQ+ dW,

where dU is an infinitessimal change in internal energy, and dW is an infinitessimal
quantity of work done by the system (sign convection following BB).

Work Work is force times distance, or in the case of a thermodynamic system,

dW = −pdV,

where dV is an infinitessimal change in volume (sign convection following BB).

Reversible isothermal expansion of an ideal gas For an ideal gas, U = U(T ), hence if
dT = 0 then dU = 0 and dQ = −dW. Using this and the ideal gas law gives

∆Q = RT ln
V2
V1

per mole of gas.

Adiabatic expansion of an ideal gas Adiabatic means reversible and adiathermal (dQ =
0). Using this, dU = CV dT for an ideal gas, and the ideal gas law gives

pV γ = const.
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Efficiency of an engine cycle Engines are supposed to convert heat into work. The effi-
ciency is given by the work output of the engine divided by the heat input

η =
W

Qh
=
Qh −Qc
Qh

,

where Qh is the heat input and Qc is the (waste) heat output.

Efficiency of a Carnot engine The Carnot engine is the most efficient engine possible be-
tween two thermal reservoirs. It is composed of two isothermal paths and two adiabatic
paths. Its efficiency is

ηcarnot = 1− Tc
Th
,

where Th and Tc are the temperatures of the hot and cold reservoirs, respectively.

Second law of thermodynamics No process is possible with the sole result of complete
conversion of heat into work, or, no process is possible with the sole result of transfer
of heat from a colder to a hotter body.

Entropy A function of state defined by the exact differential

dS =
dQrev

T
,

where dQrev is the amount of heat added to the system reversibly. For any process,
dS ≥ 0, where the equality holds if the process is reversible. The definition of entropy
from kinetic theory is

S = kB ln Ω,

which is consistent with the definition of temperature from kinetic theory.

Latent heat The energy associated with a phase change is called the latent heat. It is given
by

L = T∆S,

where T is the temperature of the phase change and ∆S is the entropy difference between
the two phases.

Clausius-Clapeyron equation This equation describes the slope of phase boundaries on
a phase diagram

dp

dT
=

L

T ∆V
,

where ∆V is the change in volume (or the change in specific volume) between the two
phases.
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