
Developing a Geodynamics Simulator with PETSc

Matthew G. Knepley1, Richard F. Katz2, and Barry Smith1

1 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL,
[knepley,bsmith]@mcs.anl.gov

2 Department of Earth and Environmental Sciences, Lamont Doherty Earth Observatory,
Palisades, NY,katz@ldeo.columbia.edu

Summary. Most high-performance simulation codes are not written from scratch but begin as
desktop experiments and are subsequently migrated to a scalable, parallel paradigm. This tran-
sition can be painful, however, because the restructuring required in conversion forces most
authors to abandon their serial code and begin an entirely new parallel code. Starting a parallel
code from scratch has many disadvantages, such as the loss of the original test suite and the
introduction of new bugs. We present a disciplined, incremental approach to parallelization
of existing scientific code using the PETSc framework. In addition to the parallelization, it
allows the addition of more physics (in this case strong nonlinearities) without the user having
to program anything beyond the new pieces of discretization code. Our approach permits users
to easily develop and experiment on the desktop with the same code that scales efficiently to
large clusters with excellent parallel performance. As a motivating example, we present work
integrating PETSc into an existing plate tectonic subduction code.

1 Geodynamics of Subduction Zones

Subduction zones, where one of the Earth’s surface plates collides with another and
sinks into the deep mantle (Fig. 1a) [20], are the locus of many of the world’s most
devastating natural disasters, especially volcanic eruptions and earthquakes. Subduc-
tion zone volcanism such as the 1980 eruption of Mount St. Helens is characterized
by violent explosions of ash and rock. Despite the relevance of this type of volcanism
to problems ranging from public safety to global climate change and mass-extinction
events in the geologic record, a detailed understanding of its source is lacking. Clues
are abundant, however, in the rocks erupted from subduction zone volcanos which
record a history of formation, transport, and eruption in their distinct geochemistry.
The complexity of these processes in terms of the governing reactive thermochemical
fluid dynamics and non-Newtonian rheology is significant; simplified models have
proven inadequate in explaining basic observations [18].

More sophisticated PDE-based computational models are needed to address the
sharp nonlinearities typically unexplored in past work. The large separation in length
and time scales of the constituent physics implies a great computational cost due to
the need for fine meshes to resolve the small (but relevant) scales. Moreover, the

2 Matthew G. Knepley et al.

highly nonlinear character of the non-Newtonian, temperature-dependent viscosity
demands costly solution algorithms. This high computational complexity coupled
with long development times have put such models out of reach for most geoscien-
tists. The Portable Extensible Toolkit for Scientific Computation (PETSc) [5] makes
it easier for geoscientists to overcome these barriers. In an abstract sense, PETSc pro-
vides a framework for collaboration between geoscientists with complex modeling
problems and numerical analysts and software engineers who have the encapsulated
numerical methods for solving those problems. In the case described here, the orig-
inal model was a specialized, single linear solver serial code capable of calculating
the thermal structure due to an analytically prescribed isoviscous flow field. By port-
ing this code into the PETSc framework we were able to extend it to solve for fully
coupled thermal structure and non-Newtonian flow with a choice of many scalable
parallel solvers, flexible boundary conditions, convenient parameter input, real-time
code steering, and many other features not available with the serial version. This was
done using an incremental process by first replacing the custom linear solver with
PETSc’s general purpose nonlinear solver, then replacing the sequential data struc-
tures with PETSc’s parallel ones and then finally adding the additional nonlinear
physics (to the portion of the code that discretizes the PDE).

η=η(P,T,V)

~100 km

Subducting slab

No Slip

Subducting slab

No Slip

St
re

ss
 fr

ee

Dislocation and diffusion creep

Distance from trench

D
ep

th

V
slab

Mantle wedge

Continental crust

Continental crust

Mantle wedge

Zero stress
fault

(a)

(b)

Fig. 1. (a) Schematic diagram of a subduction zone. Oceanic lithosphere is colliding with
continental lithosphere and being subducted. Volatile compounds are released from the sub-
ducting slab at depth and enter the mantle wedge, lowering the melting temperature of the
rock and causing partial melting. This melt rises to feed volcanos at the surface.(b) Schematic
diagram of the computational domain. Boundary conditions on the flow field are imposed at
the bottom of the crust, the top of the slab, and the intersection of the mantle wedge and
the domain boundary. Flow velocity within the mantle wedge is the solution to equation (1).
Potential temperature throughout the domain is the solution to equation (3). The “zero stress
fault” represents a frictional sliding surface. On geologic time scales all stress on this boundary
is relieved in earthquakes and does not cause deformation.

Any model of subduction zone volcanism must be based on the thermal and
flow structure of the slowly moving solid mantle wedge, shown in Fig. 1. While the
magnesium and iron-rich mantle rock is solid on human time-scales (as evidenced by
the seismic waves it transmits), on geologic time-scales it undergoes two modes of

Developing a Geodynamics Simulator with PETSc 3

solid-state creep [14]. Its motion can be described by the Stokes equation for steady
flow of an incompressible, highly viscous fluid (with zero Reynolds number),

∇P = ∇·
[
η

(
∇V + ∇VT

)]
; s.t. ∇· V = 0, (1)

η = (1/ηdisl + 1/ηdifn)−1
, (2)

whereP is the fluid pressure,V is the mantle velocity field,ηdifn is the diffusion
creep viscosity andηdisl is the dislocation creep viscosity. Both creep mechanisms
give an Arrhenius-type dependence on pressure and temperature. Dislocation creep
has an additional non-Newtonian strain rate dependence. The strength of the nonlin-
earity of viscosity makes this equation difficult to solve without a good initial guess.
In our code the initial guess in provided by a continuation method: we modify equa-
tion (1) to letη → ηα, whereα is a number between zero and one. The continuation
method, described in section 5.1, variesα over a sequence of solves of increasing
nonlinearity to reach natural variation in viscosity. The solution at each step is used
as a guess for the following solve. The first step in this process is to solve the problem
for constant viscosity (α=0), where the system of equations is linear and analytically
tractable.

The production of molten rock depends fundamentally on the mantle temperature
field. The distribution of heat is governed by the conservation of enthalpy, expressed
as an advection-diffusion equation,

∂θ

∂t
+ V ·∇θ = κ∇2θ, (3)

whereθ is the mantle potential temperature andκ is the thermal diffusivity of the
mantle. The mantle has a very low thermal diffusivity compared to materials such as
metal or water, and thus the advection term dominates in equation (3).

For 0 < α ≤ 1, equations (1) and (3) form a nonlinear set coupled through the
viscosity. The solution of these equations is the first stage in modeling magma gen-
esis in subduction zones. Future work will incorporate equations of porous flow of
volatiles and magma through the mantle, reactive melting, and geochemical trans-
port. Even without these complexities, however, we have achieved interesting results
with the simple, though highly nonlinear, set of equations given above. Some of these
results are presented below, after an in-depth look at the application development
process in the PETSc framework.

2 Integrating PETSc

PETSc is a set of library interfaces built in a generally hierarchical fashion. A user
may decide to use some libraries and disregard others. Fig. 2 illustrates this hierarchy
of dependencies. For instance, a user can use only the PETSc linear algebra (vectors
and matrices) libraries, or add linear solvers to those, or add nonlinear solvers to the
entire group. Thus, integration may proceed in several stages, which we discuss in
the following sections. The first step is to incorporate the PETSc libraries into the

4 Matthew G. Knepley et al.

existing compile system (i.e.,make) and to initialize the PETSc runtime. This may
be done in two ways.

Fig. 2. Interface hierarchy in a PETSc application.

The simplest approach is to adopt the PETSc makefile structure, which is pre-
sented in Fig. 3 for an application using the nonlinear solver package. The user in-
cludes thebmake/common/base , which defines both rules for compiling source
and variables that are used during the compile and link. Then, only a simple rule for
the executable is necessary using the appropriate PETSc library variable. Individual
compilation can be customized with the variables shown at the top of the makefile.

Users with large existing build systems may choose not to inherit the PETSc
make rules but instead use a lower-level interface based only on PETSc make vari-
ables. A boilerplate example is given in Fig. 4. The user now includes only the
bmake/common/variables file, which defines the make variables but does not
prescribe any rules for compilation or linking. The variables provide information
about all compilation flags, libraries, and external packages necessary to link with
PETSc.

Before any PETSc code can be run, the user must callPetscInitialize
(), and likewise after all PETSc code has completed the user must callPetscF
inalize (). This is analogous to the requirements for using MPI. In fact, if the user
has not done so already, PETSc will handle the initialization and cleanup of MPI
automatically in these routines. A simple C driver is shown in Fig. 5.

The initialization call provides the command line arguments to PETSc for pro-
cessing and can take an optional help string for the user (printed when the-help op-
tion is given). The finalization call frees any resources used by PETSc and provides

http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/Sys/PetscInitialize.html##PetscInitialize
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/Sys/PetscInitialize.html##PetscInitialize
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/Sys/PetscFinalize.html##PetscFinalize
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/Sys/PetscFinalize.html##PetscFinalize

Developing a Geodynamics Simulator with PETSc 5

CFLAGS =
FFLAGS =
CPPFLAGS=
FPPFLAGS=

include ${PETSCDIR}/bmake/common/base

ex1: ex1.o util.o chkopts
−${CLINKER} −o $@ $ˆ ${PETSCSNES LIB}
${RM} $ˆ

ex1f: ex1f.o phys.o chkopts
−${FLINKER} −o $@ $ˆ ${PETSCFORTRAN LIB} ${PETSCSNES LIB}
${RM} $ˆ

Fig. 3.Typical PETSc makefile.

include ${PETSCDIR}/bmake/common/variables

.c.o:
massageC.pl $<
${CC} −c ${MY CFLAGS} ${COPTFLAGS} ${CFLAGS} ${CCPPFLAGS} $<

.F.o:
massageFortran.pl $<
${FC} −c ${MY FFLAGS} ${FOPTFLAGS} ${FFLAGS} ${FCPPFLAGS} $<

ex1: ex1.o util.o
−${CLINKER} −o $@ $ˆ ${PETSCSNES LIB}
${RM} $<

ex1f: ex1f.o phys.o
−${FLINKER} −o $@ $ˆ ${PETSCFORTRAN LIB} ${PETSCSNES LIB}
${RM} $<

Fig. 4.Boilerplate custom makefile using PETSc.

summary logging and diagnostic information, most notably performance profiling.
The equivalent Fortran driver is shown in Fig. 6.

Notice that the command line arguments are now obtained directly from the For-
tran runtime library, rather than the user code. Once these calls are inserted into
the application code, the user can verify a successful link and run with the PETSc
libraries.

6 Matthew G. Knepley et al.

static char help[] = "Boilerplate PETSc Example.\n\n" ;

#include "petsc.h"

int main(int argc, char **argv)
{

ierr = PetscInitialize(&argc, &argv, (char *) 0, help);CHKERRQ(ierr);

/* User code */

return PetscFinalize();
}

Fig. 5.Boilerplate C driver for PETSc.

program main
implicit none

#include " include/finclude/petsc.h"

integer ierr

call PetscInitialize(PETSCNULL CHARACTER, ierr)

! User code

call PetscFinalize(ierr)
end

Fig. 6.Boilerplate Fortran driver for PETSc.

3 Data Distribution and Linear Algebra

The PETSc solvers (discussed in Section 4) require the user to provide C or Fortran
routines that compute the residual of the equation they wish to solve (after they have
discretized the PDE) and optionally the Jacobian of that residual function. We re-
fer to these functions generically asFormFunction() andFormJacobian() .
For nonlinear problems the PETSc solvers use truncated Newton methods, with line
searches or trust-regions for robustness, and possibly approximate or incomplete Ja-
cobians for efficiency.

The central objects in any PETSc simulation are the abstractions from linear
algebra, vectors and matrices, or in PETSc terms theVec andMat classes. These
form the basis of all solver and preconditioner interfaces, as well as providing the link
to user-supplied discretization and physics routines. Thus, the most important step
in the migration of an application to the PETSc framework is the incorporation of its

Developing a Geodynamics Simulator with PETSc 7

linear algebra and data distribution abstractions. Two obvious strategies emerge for
accomplishing this integration: a gradual approach that seeks to minimize the change
to existing code and a more aggressive approach that leverages as much of the PETSc
technology as possible. The next two subsections address these complementary paths
toward integration. We use the simple example of the solid-fuel ignition problem, or
Bratu problem, to illustrate the gradual evolution of a simulation, and then we give
an example of mantle subduction for the more aggressive approach.

3.1 Gradual Evolution

A new PETSc user with very complicated code, which perhaps was originally writ-
ten by someone else, may opt to make as few changes as possible when moving to
PETSc. PETSc facilitates this approach with low-level interfaces to bothVec and
Mat objects that closely resemble common serial data structures. Vectors are espe-
cially easy to migrate because the default PETSc storage format, contiguous arrays
on each process, is that most common in serial applications. Matrices are somewhat
more complicated, and in order to hide the actual matrix data storage format, PETSc
requires the user to access values through a functional interface [6].

Let us examine the Bratu problem as an example of integrating PETSc vectors
into an existing simulation [2]. This problem is modeled by the partial differential
equation

−∆u− λeu = 0. (4)

We take the domain to be the unit square and impose homogeneous Dirichlet bound-
ary conditions on the edges. We discretize the equation using a 5-point stencil finite
difference scheme, which results in a set of nonlinear algebraic equationsF (uh) = 0,
where we useuh to indicate the discrete solution vector. In Fig. 7, we present a For-
tran 90 routine that calculates the residualF as a function of the input vectoruh.
It also takes a user context as input that holds the domain information and problem
coefficient.

Notice that the boundary conditions on the residual are of the formu−uΓ , where
uΓ are the specified boundary values, because we are driving the residualF (u) to
zero. An alternative would be to eliminate those variables altogether, substituting
the boundary values in any interior calculation. However, this technique currently
imposes a greater burden on the programmer.

When integrating PETSc vectors into this code, we can let Fortran allocate the
storage, or we can use PETSc for allocation. In Fig. 8, we let PETSc manage
the memory. The input vectors already have storage allocated by PETSc, which
can be accessed as an F90 array by using theVecGetArrayF90() function
or in C by usingVecGetArray() . A sampledriver() routine shows how
PETSc allocates vector storage. If we let Fortran manage memory, then we use
VecCreateSeqWithArray() , orVecCreateMPIWithArray() in parallel,
to create theVec objects.

During a Newton iteration to solve this equation, we would require the Jacobian
J of the mappingF . Rather than being accessed as a multidimensional array, the

http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/Vec/Vec.html##Vec

8 Matthew G. Knepley et al.

module f90module
type userctx

! The start, end, and number of vertices in the x− and y−directions
integer xs,xe,ys,ye,integer mx,my
double precision lambda

end type userctx
contains
end module f90module

subroutine FormFunction(u,F,user,ierr)
use f90module
type (userctx) user
double precision u(user%xs:user%xe,user%ys:user%ye)
double precision F(user%xs:user%xe,user%ys:user%ye)
double precision two,one,hx,hy,hxdhy,hydhx,sc,uij,uxx,uyy
integer i,j,ierr

hx = 1.0/dble(user%mx−1)
hy = 1.0/dble(user%my−1)
sc = hx*hy*user%lambda
hxdhy = hx/hy
hydhx = hy/hx

do 20 j=user%ys,user%ye
do 10 i=user%xs,user%xe

! Apply boundary conditions
if (i == 1 .or. j == 1 .or. i == user%mx .or. j == user%my) then

F(i,j) = u(i,j)
! Apply finite difference scheme

else
uij = u(i,j)
uxx = hydhx * (2.0*uij − u(i−1,j) − u(i+1,j))
uyy = hxdhy * (2.0*uij − u(i,j−1) − u(i,j+1))
F(i,j) = uxx + uyy − sc*exp(uij)

endif
10 continue
20 continue

Fig. 7.Residual calculation for the Bratu problem.

Developing a Geodynamics Simulator with PETSc 9

subroutine driver(u,F,user,ierr)
implicit none

Vec u,F
int N
parameter(N=10000)

call VecCreate(PETSCCOMM WORLD,u,ierr)
call VecSetSizes(u,PETSCDECIDE,N,ierr)
call VecDuplicate(u,F,ierr)
call SolverLoop(u,F,ierr)
call VecDestroy(u,ierr)
call VecDestroy(F,ierr)
end

subroutine FormFunctionPETSc(u,F,user,ierr)
use f90module
implicit none

Vec u,F
type (userctx) user
double precision,pointer :: u v(:),f v(:)

call VecGetArrayF90(u,u v,ierr)
call VecGetArrayF90(F,f v,ierr)
call FormFunction(u v,f v,user,ierr)
call VecRestoreArrayF90(u,u v,ierr)
call VecRestoreArrayF90(F,f v,ierr)
end

Fig. 8.Driver for the Bratu problem using PETSc.

PETScMat object provides theMatSetValues () function to set logically dense
blocks of values into the structure. A function that computes the Jacobian and stores
it in a PETSc matrix is shown in Fig. 9. With this addition, the user can now run
serial code using the PETSc solvers (details are given in Section 4). Note that the
storage mechanism is the only change to user code necessary for its incorporation
into the PETSc framework using the wrapper in Fig. 8.

Although PETSc removes the need for low-level parallel programming, such as
direct calls to the MPI library, the user must still identify parallelism inherent in
the application and must structure the computation accordingly. The first step is to
partition the domain and have each process calculate the residual and Jacobian only
over its local piece. This is easily accomplished by redefining thexs , xe , ys , andye
variables on each process, converting loops over the entire domain into loops over
the local domain. However, this method uses nearest-neighbor information, and thus

http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/Mat/Mat.html##Mat
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/Mat/MatSetValues.html##MatSetValues

10 Matthew G. Knepley et al.

subroutine FormJacobian(u,jac,user,ierr)
use f90module
type (userctx) user
Mat jac
double precision x(user%xs:user%xe,user%ys:user%ye)
double precision two,one,hx,hy,hxdhy,hydhx,sc,v(5)
integer row,col(5),i,j,ierr

one = 1.0
two = 2.0
hx = one/dble(user%mx−1)
hy = one/dble(user%my−1)
sc = hx*hy*user%lambda
hxdhy = hx/hy
hydhx = hy/hx
do 20 j=user%ys,user%ye

row = (j − user%ys)*user%xm − 1
do 10 i=user%xs,user%xe

row = row + 1
! boundary points

if (i == 1 .or. j == 1 .or. i == user%mx .or. j == user%my) then
col(1) = row
v(1) = one
call MatSetValues(jac,1,row,1,col,v,INSERT VALUES,ierr)

! interior grid points
else

v(1) = −hxdhy
v(2) = −hydhx
v(3) = two*(hydhx + hxdhy) − sc*exp(x(i,j))
v(4) = −hydhx
v(5) = −hxdhy
col(1) = row − user%xm
col(2) = row − 1
col(3) = row
col(4) = row + 1
col(5) = row + user%xm
call MatSetValues(jac,1,row,5,col,v,INSERT VALUES,ierr)

endif
10 continue
20 continue

Fig. 9.Jacobian calculation for the Bratu problem using PETSc.

Developing a Geodynamics Simulator with PETSc 11

we must have access to some values not present locally on the process, as shown in
Fig. 10.

Box-type stencil Star-type stencil

Proc 6

Proc 0 Proc 0Proc 1 Proc 1

Proc 6

Fig. 10.Star and box stencils using a DA.

We must store values for theseghostpoints locally so that they may be used for
the computation. In addition, we must ensure that these values are identical to the cor-
responding values on the neighboring processes. At the lowest level, PETSc provides
ghosted vectors, created usingVecCreateGhost (), with storage for some values
owned by other processes. These values are explicitly indicated during construction.
TheVecGhostUpdateBegin () andVecGhostUpdateEnd () functions trans-
fer values between ghost storage and the corresponding storage on other processes.
This method, however, can become complicated for the user. Therefore, for the com-
mon case of a logically rectangular grid, PETSc provides theDA object to manage
the determination, allocation, and coherence of ghost values. TheDA object is dis-
cussed fully in Section 3.2, but we give here a short introduction in the context of the
Bratu problem.

TheDA object represents a distributed, structured (possibly staggered) grid and
thus has more information than our serial grid. If we augment our user context to
include information about ghost values, we can obtain all the grid information from
theDA. Figure 11 shows the creation of aDA when one initially know only the total
number of vertices in thex andy directions. Alternatively, we could have specified
the local number of vertices in each direction.

Now we need only modify our PETSc residual routine to update the ghost values,
as shown in Fig. 12.

Notice that the ghost value scatter is a two-step operation. This allows the
communication to overlap with local computation that may be taking place while
the messages are in transit. The only change necessary for the residual calcu-
lation itself is the correct declaration of the input array,double precision

http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/Vec/VecCreateGhost.html##VecCreateGhost
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/Vec/VecGhostUpdateBegin.html##VecGhostUpdateBegin
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/Vec/VecGhostUpdateEnd.html##VecGhostUpdateEnd
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/DA/DA.html##DA
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/DA/DA.html##DA
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/DA/DA.html##DA
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/DA/DA.html##DA
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/DA/DA.html##DA

12 Matthew G. Knepley et al.

type userctx
DA da

! The start, end, and number of vertices in the x−direction
integer xs,xe,xm

! The start, end, and number of ghost vertices in the x−direction
integer gxs,gxe,gxm

! The start, end, and number of vertices in the y−direction
integer ys,ye,ym

! The start, end, and number of ghost vertices in the y−direction
integer gys,gye,gym

! The number of vertices in the x− and y−directions
integer mx,my

! The MPI rank of this process
integer rank

! The coefficient in the Bratu equation
double precision lambda

end type userctx

call DACreate2d(PETSCCOMM WORLD,DA NONPERIODIC,DA STENCIL STAR, &
& user%mx,user%my,PETSCDECIDE,PETSCDECIDE,1,1, &
& PETSCNULL INTEGER,PETSCNULL INTEGER,user%da,ierr)
call DAGetCorners(user%da,user%xs,user%ys,PETSCNULL INTEGER, &

& user%xm,user%ym,PETSCNULL INTEGER,ierr)
call DAGetGhostCorners(user%da,user%gxs,user%gys, &

& PETSCNULL INTEGER,user%gxm,user%gym, &
& PETSCNULL INTEGER,ierr)

! Here we shift the starting indices up by one so that we can easily
! use the Fortran convention of1−based indices, rather than0−based.

user%xs = user%xs+1
user%ys = user%ys+1
user%gxs = user%gxs+1
user%gys = user%gys+1
user%ye = user%ys+user%ym−1
user%xe = user%xs+user%xm−1
user%gye = user%gys+user%gym−1
user%gxe = user%gxs+user%gxm−1

Fig. 11.Creation of a DA for the Bratu problem.

Developing a Geodynamics Simulator with PETSc 13

subroutine FormFunctionPETSc(u,F,user,ierr)
implicit none

Vec u,F
integer ierr
type (userctx) user

double precision,pointer :: lu v(:),lf v(:)
Vec uLocal

call DAGetLocalVector(user%da,uLocal,ierr)
call DAGlobalToLocalBegin(user%da,u,INSERT VALUES,uLocal,ierr)
call DAGlobalToLocalEnd(user%da,u,INSERT VALUES,uLocal,ierr)

call VecGetArrayF90(uLocal,lu v,ierr)
call VecGetArrayF90(F,lf v,ierr)

! Actually compute the local portion of the residual
call FormFunctionLocal(lu v,lf v,user,ierr)

call VecRestoreArrayF90(uLocal,lu v,ierr)
call VecRestoreArrayF90(F,lf v,ierr)

call DARestoreLocalVector(user%da,uLocal,ierr)

Fig. 12.Parallel residual calculation for the Bratu problem using PETSc.

u(user%gxs:user%gxe,user%gys:user%gye) , which now includes ghost
values,

The changes toFormJacobian() are similar, resizing the input array and
changing slightly the calculation of row and column indices, and can be found in
the PETSc example source. We have now finished the initial introduction of PETSc
linear algebra, and the simulation is ready to run in parallel.

3.2 Rapid Evolution

The user who is willing to raise the level of abstraction in a code can start by em-
ploying theDA to describe the problem domain and discretization. The data interface
mimics a multidimensional array and is thus ideal for finite difference, finite volume,
and low-order finite element schemes on a logically rectangular grid. In fact, after the
definition of aFormFunction() routine, the simulation is ready to run because
the nonlinear solver provides approximate Jacobians automatically, as discussed in
Section 4.

http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/DA/DA.html##DA

14 Matthew G. Knepley et al.

DASetLocalFunction(user.da, (DALocalFunction1) FormFunctionLocal);

Fig. 13.Using the DA to form a function.

int FormFunctionLocal(DALocalInfo *info,double **u,double **f,AppCtx *user){
double two = 2.0,hx,hy,hxdhy,hydhx,sc;
double uij,uxx,uyy;
int i,j;

hx = 1.0/(double)(info−>mx−1);
hy = 1.0/(double)(info−>my−1);
sc = hx*hy*user−>lambda;
hxdhy = hx/hy;
hydhx = hy/hx;
/* Compute function over the locally owned part of the grid */
for (j=info−>ys; j<info−>ys+info−>ym; j++) {

for (i=info−>xs; i<info−>xs+info−>xm; i++) {
if (i == 0 | | j == 0 | | i == info−>mx−1 | | j == info−>my−1) {

f[j][i] = u[j][i];
} else {

uij = u[j][i];
uxx = (two*uij − u[j][i−1] − u[j][i+1])*hydhx;
uyy = (two*uij − u[j−1][i] − u[j+1][i])*hxdhy;
f[j][i] = uxx + uyy − sc*exp(uij);

}
}

}
}

Fig. 14.FormFunctionLocal() for the Bratu problem.

We begin by examining the Bratu problem from the last section, only this time in
C. We can now provide our local residual routine to theDA; see Fig. 13.

The grid information is passed toFormFunctionLocal() in a DALocalI
nfo structure, as shown in Fig. 14.

The fields are passed directly as multidimensional C arrays, complete with ghost
values. An application scientist can use a boilerplate example, such as the Bratu prob-
lem, merely altering the local physics calculation inFormFunctionLocal() , to
rapidly obtain a parallel, scalable simulation that runs on the desktop as well as on
massively parallel supercomputers.

If the user has an expression for the Jacobian of the residual function, then this
matrix can also be computed by using theDA interface with the call, as in Fig. 15,
and the corresponding routine for the local calculation in Fig. 16.

http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/DA/DA.html##DA
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/DA/DALocalInfo.html##DALocalInfo
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/DA/DALocalInfo.html##DALocalInfo
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/DA/DA.html##DA

Developing a Geodynamics Simulator with PETSc 15

DASetLocalJacobian(user.da, (DALocalFunction1) FormJacobianLocal);

Fig. 15.Using the DA to form a Jacobian.

int FormJacobianLocal(DALocalInfo *info,double **x,Mat jac,AppCtx *user){
MatStencil col[5],row;
double lambda,v[5],hx,hy,hxdhy,hydhx,sc;
int i,j;

lambda = user−>param;
hx = 1.0/(double)(info−>mx−1);
hy = 1.0/(double)(info−>my−1);
sc = hx*hy*lambda;
hxdhy = hx/hy; hydhx = hy/hx;

for (j=info−>ys; j<info−>ys+info−>ym; j++) {
for (i=info−>xs; i<info−>xs+info−>xm; i++) {

row.j = j; row.i = i;
/* boundary points */
if (i == 0 | | j == 0 | | i == info−>mx−1 | | j == info−>my−1) {

v[0] = 1.0;
MatSetValuesStencil(jac,1,&row,1,&row,v,INSERT VALUES);

} else {
/* interior grid points */

v[0] = −hxdhy; col[0].j = j − 1; col[0].i = i;
v[1] = −hydhx; col[1].j = j; col[1].i = i−1;
v[2] = 2.0*(hydhx + hxdhy) − sc*exp(x[j][i]); col[2].j = j; col[2].i = i;
v[3] = −hydhx; col[3].j = j; col[3].i = i+1;
v[4] = −hxdhy; col[4].j = j + 1; col[4].i = i;
MatSetValuesStencil(jac,1,&row,5,col,v,INSERT VALUES);

}
}

}
MatAssemblyBegin(jac,MAT FINAL ASSEMBLY);
MatAssemblyEnd(jac,MAT FINAL ASSEMBLY);
MatSetOption(jac,MAT NEW NONZERO LOCATION ERR);

}

Fig. 16.FormJacobianLocal() for the Bratu problem.

16 Matthew G. Knepley et al.

int FormFunctionLocal(DALocalInfo *info,Field **x,Field **f,void *ptr){
AppCtx *user = (AppCtx*)ptr;
Parameter *param = user−>param;
GridInfo *grid = user−>grid;
double mag w, mag u;
int ilim = info−>mx−1, jlim = info−>my−1, i, j;

for (j=info−>ys; j<info−>ys+info−>ym; j++) {
for (i=info−>xs; i<info−>xs+info−>xm; i++) {

calculateXMomentumResidual(i, j, x, f, user);
calculateZMomentumResidual(i, j, x, f, user);
calculatePressureResidual(i, j, x, f, user);
calculateTemperatureResidual(i, j, x, f, user);

}
}

}

Fig. 17.FormFunctionLocal() for the mantle subduction problem.

We have so far presented simple examples involving a perturbed Laplacian, but
this development strategy extends far beyond toy problems. We have developed
large-scale, parallel geophysical simulations [1] that are producing new results in
the field. We began by replacingFormFunctionLocal() in the Bratu example
with one containing the linear physics of the previous sequential linear subduction
code (dropping the previous code’s linear solve). Then the PETSc solver results were
compared, for correctness, with the complete prior subduction code. Next the new
code was immediately run in parallel for correctness and efficiency tests. Finally
the nonlinear terms from the more complicated physics of the mantle subduction
problem, discussed in Section 1 and shown in Figs. 17-21 and better quality dis-
cretizations of the boundary conditions were added. In fact, since the structure of
theFormFunction() changed significantly, the finalFormFunction() looks
nothing like the original, but the process of obtaining through the incremental ap-
proach reduced the learning curve for PETSc and make correctness checking at the
various stages much easier.

The details of the subduction code are not as important as the recognition that
a very complicated physics problem need not involve any more complication in our
simulation infrastructure. To give more insight into the actual calculation, we show
in Fig. 22 the explicit calculation of the residual from the continuity equation.

Here we have used theDA for a multicomponent problem on a staggered mesh
without alteration because the structure of the discretization remains logically rect-
angular.

Although theDA manages communication during the solution process, data post-
processing, often necessary for visualization or analysis, also requires this function-
ality. For the mantle subduction simulation, we want to calculate both the second in-

http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/DA/DA.html##DA
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/DA/DA.html##DA

Developing a Geodynamics Simulator with PETSc 17

int calculateXMomentumResidual(int i, int j, Field **x,Field **f,AppCtx *user){
Parameter*param = user−>param;
GridInfo *grid = user−>grid;
int ilim = info−>mx−1, jlim = info−>my−1;

if (i<j) {
f[j][i].u = x[j][i].u − SlabVel(’U’ ,i,j,user);

} else if (j<=grid−>jlid | | (j<grid−>corner+grid−>inose && i<grid−>corner+grid−>inose)) {
/* in the lithospheric lid */
f[j][i].u = x[j][i].u − 0.0;

} else if (i==ilim) { /* on the right side boundary */
if (param−>ibound==BC ANALYTIC) {

f[j][i].u = x[j][i].u − HorizVelocity(i,j,user);
} else {

f[j][i].u = XNormalStress(x,i,j,CELL CENTER,user) − EPS ZERO;
}

} else if (j==jlim) { /* on the bottom boundary */
if (param−>ibound==BC ANALYTIC) {

f[j][i].u = x[j][i].u − HorizVelocity(i,j,user);
} else if (param−>ibound==BC NOSTRESS) {

f[j][i].u = XMomentumResidual(x,i,j,user);
}

} else { /* in the mantle wedge */
f[j][i].u = XMomentumResidual(x,i,j,user);

}
}

Fig. 18.X-momentum residual for the mantle subduction problem.

variant of the strain rate tensor and the viscosity over the grid (at both cell centers and
corners). Using theDAGlobalToLocalBegin () andDAGlobalToLocalEnd
() functions, we transferred the global solution data to local ghosted vectors and pro-
ceeded with the calculation. We can also transfer data from local vectors to a global
vector usingDALocalToGlobal (). The entire viscosity calculation is given in
Fig. 23.

Note that this framework allows the user to manage arbitrary fields over the do-
main. For instance, a porous flow simulation might manage material properties of
the medium in this fashion.

4 Solvers

The SNES object in PETSc is an abstraction of the “inverse” of a nonlinear oper-
ator. The user provides aFormFunction() routine, as seen in Section 3, which
computes the action of the operator on an input vector. Linear problems can also be

http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/DA/DAGlobalToLocalBegin.html##DAGlobalToLocalBegin
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/DA/DAGlobalToLocalEnd.html##DAGlobalToLocalEnd
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/DA/DAGlobalToLocalEnd.html##DAGlobalToLocalEnd
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/DA/DALocalToGlobal.html##DALocalToGlobal
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/SNES/SNES.html##SNES

18 Matthew G. Knepley et al.

int calculateZMomentumResidual(int i, int j, Field **x,Field **f,AppCtx *user){
Parameter*param = user−>param;
GridInfo *grid = user−>grid;
int ilim = info−>mx−1,jlim = info−>my−1;

if (i<=j) {
f[j][i].w = x[j][i].w − SlabVel(’W’ ,i,j,user);

} else if (j<=grid−>jlid | | (j<grid−>corner+grid−>inose && i<grid−>corner+grid−>inose)) {
/* in the lithospheric lid */
f[j][i].w = x[j][i].w − 0.0;

} else if (j==jlim) { /* on the bottom boundary */
if (param−>ibound==BC ANALYTIC) {

f[j][i].w = x[j][i].w − VertVelocity(i,j,user);
} else {

f[j][i].w = ZNormalStress(x,i,j,CELL CENTER,user) − EPS ZERO;
}

} else if (i==ilim) { /* on the right side boundary */
if (param−>ibound==BC ANALYTIC) {

f[j][i].w = x[j][i].w − VertVelocity(i,j,user);
} else if (param−>ibound==BC NOSTRESS) {

f[j][i].w = ZMomentumResidual(x,i,j,user);
}

} else { /* in the mantle wedge */
f[j][i].w = ZMomentumResidual(x,i,j,user);

}
}

Fig. 19.Z-momentum residual for the mantle subduction problem.

int calculatePressureResidual(int i, int j, Field **x,Field **f,AppCtx *user){
Parameter*param = user−>param;
GridInfo *grid = user−>grid;
int ilim = info−>mx−1, jlim = info−>my−1;

if (i<j | | j<=grid−>jlid | | (j<grid−>corner+grid−>inose && i<grid−>corner+grid−>inose)) {
/* in the lid or slab */
f[j][i].p = x[j][i].p;

} else if ((i==ilim | | j==jlim) && param−>ibound==BC ANALYTIC) { /* on an analytic boundary */
f[j][i].p = x[j][i].p − Pressure(i,j,user);

} else { /* in the mantle wedge */
f[j][i].p = ContinuityResidual(x,i,j,user);

}
}

Fig. 20.Pressure, or continuity, residual for the mantle subduction problem.

Developing a Geodynamics Simulator with PETSc 19

int calculateTemperatureResidual(int i, int j, Field **x,Field **f,AppCtx *user){
Parameter*param = user−>param;
GridInfo *grid = user−>grid;
int ilim = info−>mx−1, jlim = info−>my−1;

if (j==0) { /* on the surface */
f[j][i].T = x[j][i].T + x[j+1][i].T + PetscMax(x[j][i].T,0.0);

} else if (i==0) { /* slab inflow boundary */
f[j][i].T = x[j][i].T − PlateModel(j,PLATE SLAB,user);

} else if (i==ilim) { /* right side boundary */
mag u = 1.0 − pow((1.0−PetscMax(PetscMin(x[j][i−1].u/param−>cb,1.0),0.0)), 5.0);
f[j][i].T = x[j][i].T − mag u*x[j−1][i−1].T − (1.0−mag u)*PlateModel(j,PLATE LID ,user);

} else if (j==jlim) { /* bottom boundary */
mag w = 1.0 − pow((1.0−PetscMax(PetscMin(x[j−1][i].w/param−>sb,1.0),0.0)), 5.0);
f[j][i].T = x[j][i].T − mag w*x[j−1][i−1].T − (1.0−mag w);

} else { /* in the mantle wedge */
f[j][i].T = EnergyResidual(x,i,j,user);

}
}

Fig. 21.Temperature, or energy, residual for the mantle subduction problem.

double precision ContinuityResidual(Field **x, int i, int j, AppCtx *user)
{

GridInfo *grid = user−>grid;
double precision uE,uW,wN,wS,dudx,dwdz;

uW = x[j][i−1].u; uE = x[j][i].u; dudx = (uE − uW)/grid−>dx;
wS = x[j−1][i].w; wN = x[j][i].w; dwdz = (wN − wS)/grid−>dz;
return dudx + dwdz;

}

Fig. 22.Calculation of the continuity residual for the mantle subduction problem.

solved by usingSNES with no loss of efficiency compared to using the underlying
KSP object (PETSc linear solver object) directly. ThusSNES seems the appropri-
ate framework for a general-purpose simulator, providing the flexibility to add or
subtract nonlinear terms from the equation at will.

TheSNES solver does not require a user to implement a Jacobian. Default rou-
tines are provided to compute a finite difference approximation using coloring to
account for the sparsity of the matrix. The user does not even need the PETScMat
interface but can initially interact only withVec objects, making the transition to

PETSc nearly painless. However, these approximations to the Jacobian can have nu-
merical difficulties and are not as efficient as direct evaluation. Therefore, the user

http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/SNES/SNES.html##SNES
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/KSP/KSP.html##KSP
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/SNES/SNES.html##SNES
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/SNES/SNES.html##SNES
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/Mat/Mat.html##Mat
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/Mat/Mat.html##Mat
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/Vec/Vec.html##Vec

20 Matthew G. Knepley et al.

/* Compute both the second invariant of the strain rate tensor and the viscosity */
int ViscosityField(DA da, Vec X, Vec V,AppCtx *user){

Parameter *param = user−>param;
GridInfo *grid = user−>grid;
Vec localX;
Field **v, **x;
double eps, dx, dz, T, epsC, TC;
int i,j,is,js,im,jm,ilim ,jlim ,ivt;

ivt = param−>ivisc;
param−>ivisc = param−>output ivisc;

DACreateLocalVector(da, &localX);
DAGlobalToLocalBegin(da, X, INSERT VALUES, localX);
DAGlobalToLocalEnd(da, X, INSERT VALUES, localX);
DAVecGetArray(da,localX,(void**)&x);
DAVecGetArray(da,V,(void**)&v);

/* Parameters */
dx = grid−>dx; dz = grid−>dz;
ilim = grid−>ni−1; jlim = grid−>nj−1;

/* Compute real temperature, strain rate and viscosity */
DAGetCorners(da,&is,&js,PETSCNULL ,&im,&jm,PETSCNULL);
for (j=js; j<js+jm; j++) {

for (i=is; i<is+im; i++) {
T = param−>potentialT * x[j][i].T * exp((j−0.5)*dz*param−>z scale);
if (i<ilim && j<jlim) {

TC = param−>potentialT * TInterp(x,i,j) * exp(j*dz*param−>z scale);
} else {

TC = T;
}
/* Compute the values at both cell centers and cell corners */
eps = CalcSecInv(x,i,j,CELL CENTER,user);
epsC = CalcSecInv(x,i,j,CELL CORNER,user);
v[j][i].u = eps;
v[j][i].w = epsC;
v[j][i].p = Viscosity(T,eps,dz*(j−0.5),param);
v[j][i].T = Viscosity(TC,epsC,dz*j,param);

}
}
DAVecRestoreArray(da,V,(void**)&v);
DAVecRestoreArray(da,localX,(void**)&x);
param−>ivisc = ivt;

}

Fig. 23. Calculation of the second invariant of the strain tensor and viscosity field for the
mantle subduction problem.

Developing a Geodynamics Simulator with PETSc 21

KSP ksp, *subksp;
PC bjacobi, ilu;

SNESGetKSP(snes, &ksp);
KSPGetPC(ksp, &bjacobi);
PCBJacobiGetSubKSP(bjacobi, PETSCNULL , PETSCNULL , &subksp);
KSPGetPC(subksp[0], &ilu);
PCILUSetLevels(ilu, levels);

Fig. 24.Customizing the preconditioner on a single process.

has the option of providing a routine or of using the ADIC [15] or similar system for
automatic differentiation. The finite difference approximation can be activated by
using the-snes fd and-mat fd coloring freq options or by providing the
SNESDefaultComputeJacobianColor () function toSNESSetJacobian
().

Through theSNES object, the user may also access the great range of direct
and iterative linear solvers and preconditioners provided by PETSc. Sixteen different
Krylov solvers are available including GMRES, BiCGStab, and LSQR, along with
interfaces to popular sparse direct packages, such as MUMPS [4] and SuperLU [9].
In addition to a variety of incomplete factorization preconditioners, including PI-
LUT [16], PETSc supports additive Schwartz preconditioning, algebraic multigrid
through BoomerAMG [13], and the geometric multigrid discussed below. The full
panoply of solvers and preconditioners available is catalogued on the PETSc Web-
site [3].

The modularity of PETSc allows users to easily customize each solver. For in-
stance, suppose the user wishes to increase the number of levels in ILU(k) precon-
ditioning on one block of a block-Jacobi scheme. The code fragment in Fig. 24 will
set the number of levels of fill tolevels .

PETSc provides an elegant framework for managing geometric multigrid in com-
bination with aDA , which is abstracted in theDMMGobject. In the same way that
any linear solve can be performed withSNES, any preconditioner or solver com-
bination is available inDMMGby using a single level. That is, the same user code
supports both geometric multigrid as well as direct methods, Krylov methods etc.
When creating aDMMG, the user specifies the number of levels of grid refinement
and provides the coarse-grid information (see Fig. 25), which is always aDA object
at present, although unstructured prototypes are being developed. Then theDMMG
object calculates the intergrid transfer operators, prolongation and restriction, and

allocates objects to hold the solution at each level. The user must provide the action
of the residual operatorF and can optionally provide a routine to compute the Jaco-
bian matrix (which will be called on each level) and a routine to compute the initial
guess, as in Fig. 26.

With this information, the user can now solve the equation and retrieve the solu-
tion vector, as in Fig. 27.

http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/SNES/SNESDefaultComputeJacobianColor.html##SNESDefaultComputeJacobianColor
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/SNES/SNESSetJacobian.html##SNESSetJacobian
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/SNES/SNESSetJacobian.html##SNESSetJacobian
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/SNES/SNES.html##SNES
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/DA/DA.html##DA
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/DA/DMMG.html##DMMG
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/SNES/SNES.html##SNES
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/DA/DMMG.html##DMMG
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/DA/DMMG.html##DMMG
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/DA/DA.html##DA
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/DA/DMMG.html##DMMG
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/DA/DMMG.html##DMMG

22 Matthew G. Knepley et al.

DMMGCreate(comm, grid.mglevels, user, &dmmg);
DMMGSetDM(dmmg, (DM) da);

Fig. 25.Creating a DMMG.

DMMGSetSNESLocal(dmmg, FormFunctionLocal, FormJacobianLocal, 0, 0);
DMMGSetInitialGuess(dmmg, FormInitialGuess);

Fig. 26.Providing discretization and assembly routines to DMMG.

DMMGSolve(dmmg);
soln = DMMGGetx(dmmg);

Fig. 27.Solving the problem with DMMG.

5 Extensions

PETSc is not a complete environment for simulating physical phenomena. Rather
it is a set of tools that allow the user to assemble such an environment tailored to
a specific application. As such, PETSc will never provide every facility appropriate
for a given simulation. However, the user can easily extend PETSc and supplement
its capabilities. We present two examples in the context of the mantle subduction
simulation.

5.1 Simple Continuation

Because of the highly nonlinear dependence of viscosity on temperature and strain
rate in equation (1), the iteration in Newton’s method can fail to converge without
a good starting guess of the solution. On the other hand, for the isoviscous case
where temperature is coupled to velocity only through advection, a solution is easily
reached. It is therefore natural to propose a continuation scheme in the viscosity be-
ginning with constant viscosity and progressing to full variability. A simple adaptive
continuation model was devised, in which the viscosity was raised to a power be-
tween zero and one,η → ηα, whereα=0 corresponds to constant viscosity andα=1
corresponds to natural viscosity variation. In the continuation loop,α was increased
towards unity by an amount dependent on the rate of convergence of the previous
SNES solve.

PETSc itself provides no special support for continuation, but it is sufficiently
modular that a continuation loop was readily constructed in the application code,
using repeated calls toDMMGSolve(), and found to work quite well.

http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/SNES/SNES.html##SNES
http://www.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-dev/docs/manualpages/DA/DMMGSolve.html##DMMGSolve

Developing a Geodynamics Simulator with PETSc 23

5.2 Simple Steering

No rigorous justification had been given for the continuation strategy above, and
consequently it was possible that, for certain initial conditions, Newton would fail to
converge, thereby resulting in extremely long run times. An observant user could de-
tect this situation and abort the run, but all the potentially useful solution information
up to that point would be lost. A clean way to asynchronously abort the continua-
tion loop was thus needed. On architectures where OS signals are available, PETSc
provides an interface for registering signal handlers. Thus we were able to define a
handler. The user wishing to change the control flow of the simulation simply sends
the appropriate signal to the process. This sets a flag in the user data that causes the
change at the next iteration.

6 Simulation Results

A long-standing debate has existed between theorists and observationalists over the
thermal structure of subduction zones. Modelers, using constant viscosity flow sim-
ulations to compute thermal structure, have predicted relatively cold subduction
zones [19]. Conversely, observationalists, who use heat flow measurements and min-
eralogical thermobarometry to estimate temperatures at depth, have long claimed
that subduction zones are hotter than predicted. They have invoked the presence of
strong upwelling of hot mantle material to supply the heat. This upwelling was never
predicted by isoviscous flow models, however.

The debate remained unresolved until recently when several groups, including
our own, succeeded in developing simulations with realistically variable viscosity
(for other examples [8,10,12,18,21]). A comparison of flow and temperature fields
for variable and constant viscosity simulations generated with our code is shown
in Fig. 28. Results from these simulations are exciting because they close the gap
between models and observations: they predict hotter mantle temperatures, steeper
surface thermal gradients, and upwelling mantle flow.

Furthermore, these simulations allow for quantitative predictions of variation of
observables with subduction parameters. A recent study of subduction zone earth-
quakes has identified an intriguing trend: the vertical distance from subduction zone
volcanoes to the surface of the subducting slab is anti-correlated with descent rate of
the slab [11]. Preliminary calculations with our model are consistent with this trend,
indicating that flow and thermal structure may play an important role in determining
not only the quantity and chemistry of magmas but also their path of transport to the
surface. Further work is required to resolve this issue.

Simulating the geodynamics of subduction is an example of our success in port-
ing an existing code into the PETSc framework, simultaneously parallelizing the
code and increasing its functionality. Using this code as a template, we rapidly de-
veloped a related simulation of another tectonic boundary, the mid-ocean ridge. This
work was done to address a set of observations of systematic morphological asym-
metry in the global mid-ocean ridge system [7]. Our model confirms the qualitative

24 Matthew G. Knepley et al.

D
ep

th
, k

m

log
10

η and flow field

0 100 200 300

0

50

100

150

200

250

300 19

20

21

22

23

24 Temperature, °C

1100

50 100 150 200

50

100

150

0

200

400

600

800

1000

1200

1400

Distance, km

D
ep

th
, k

m

0 100 200 300

0

50

100

150

200

250

300 19

20

21

22

23

24

Distance, km

1100

50 100 150 200

50

100

150

0

200

400

600

800

1000

1200

1400

Is
ov

is
co

us
V

ar
ia

bl
e

V
is

co
si

ty

(a) (b)

(c) (d)

Fig. 28.2D viscosity and potential temperature fields from simulations on 8 processors with
230,112 degrees of freedom. Panels in the top row are from a simulation withα=1 in equation
(1). Panels in bottom row haveα=0. The white box in panels (a) and (c) shows the region in
which temperature is plotted in panels (b) and (d).(a) Colors showlog10 of the viscosity field.
Note that there are more than five orders of magnitude variation in viscosity. Arrows show the
flow direction and magnitude (the slab is being subducted at a rate of 6 cm/year). Upwelling
is evident in the flow field near the wedge corner.(b) Temperature field from the variable
viscosity simulation; 1100◦C isotherm is shown as a dashed line.(c) (Constant) viscosity and
flow field from the isoviscous simulation. Strong flow is predicted at the base of the crust
despite the low-temperature rock there. No upwelling flow is predicted.(d) Temperature field
from isoviscous simulation. Note that the mantle wedge corner is much colder than in (b).

mechanism that had been proposed to explain these observations. Furthermore, it
shows a quantitative agreement with trends in the observed data [17]. As with our
models of subduction, the key to demonstrating the validity of the hypothesized dy-
namics was simulating them with the strongly nonlinear rheology that characterizes
mantle rock on geologic timescales. The computational tools provided by PETSc en-
abled us easily handle this rheology, reducing development time and allowing us to
focus on model interpretation.

References

1. PETSc SNES Example 30. http://www.mcs.anl.gov/petsc/petsc-2/

Developing a Geodynamics Simulator with PETSc 25

snapshots/petsc-current/src/snes/examples/tutorials/ex30.c.
html

2. PETSc SNES Example 5. http://www.mcs.anl.gov/petsc/petsc-2/
snapshots/petsc-current/src/snes/examples/tutorials/ex5f90.
F.html

3. PETSc Solvers. http://www.mcs.anl.gov/petsc/petsc-2/
documentation/linearsolvertable.html

4. Amestoy, P. R., Duff, I. S., L’Excellent, J.-Y., and Koster, J.: A fully asynchronous mul-
tifrontal solver using distributed dynamic scheduling.SIAM Journal on Matrix Analysis
and Applications, 23(1):15–41, (2001)

5. Balay, S., Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G.,
McInnes, L. C., Smith, B. F., and Zhang, H.: PETSc Web page.http://www.mcs.
anl.gov/petsc

6. Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F.: Efficient management of par-
allelism in object oriented numerical software libraries. In Arge, E., Bruaset, A. M., and
Langtangen, H. P., editors,Modern Software Tools in Scientific Computing, pages 163–
202. Birkḧauser Press, (1997)

7. Carbotte, S., Small, C., and Donnelly, K.: The influence of ridge migration on the mag-
matic segmentation of mid-ocean ridges.Nature, 429:743–746, (2004)

8. Conder, J., Wiens, D., and Morris, J.: On the decompression melting structure at volcanic
arcs and back-arc spreading centers.Geophys. Res. Letts., 29, (2002)

9. Demmel, J. W., Gilbert, J. R., and Li, X. S.: SuperLU user’s guide. Technical Report
LBNL-44289, Lawrence Berkeley National Laboratory, (2003)

10. Eberle, M., Grasset, O., and Sotin, C.: A numerical study of the interaction of the man-
tle wedge, subducting slab, and overriding plate.Phys. Earth Planet. In., 134:191–202,
(2002)

11. England, P., Engdahl, R., and Thatcher, W.: Systematic variation in the depth of slabs
beneath arc volcanos.Geophys. J. Int., 156(2):377–408, (2003)

12. Furukawa, Y.: Depth of the decoupling plate interface and thermal structure under arcs.
J. Geophys. Res., 98:20005–20013, (1993)

13. Henson, V. E. and Yang, U. M.: BoomerAMG: A parallel algebraic multigrid solver and
preconditioner. Technical Report UCRL-JC-133948, Lawrence Livermore National Lab-
oratory, (2000)

14. Hirth, G. and Kohlstedt, D.: Rheology of the upper mantle and the mantle wedge: A view
from the experimentalists. InInside the Subduction Factory, volume 138 ofGeophysical
Monograph. American Geophysical Union, (2003)

15. Hovland, P., Norris, B., and Smith, B.: Making automatic differentiation truly automatic:
Coupling PETSc with ADIC. InProceedings of ICCS2002, (2002)

16. Hysom, D. and Pothen, A.: A scalable parallel algorithm for incomplete factor precondi-
tioning. SIAM Journal on Scientific Computing, 22:2194–2215, (2001)

17. Katz, R., Spiegelman, M., and Carbotte, S.: Ridge migration, asthenospheric flow and the
origin of magmatic segmentation in the global mid-ocean ridge system.Geophys. Res.
Letts., 31, (2004)

18. Kelemen, P., Rilling, J., Parmentier, E., Mehl, L., and Hacker, B.: Thermal structure due
to solid-state flow in the mantle wedge beneath arcs. InInside the Subduction Factory,
volume 138 ofGeophysical Monograph. American Geophysical Union, (2003)

19. Peacock, S. and Wang, K.: Seismic consequences of warm versus cool subduction meta-
morphism: Examples from southwest and northeast Japan.Science, 286:937–939, (1999)

20. Stern, R.: Subduction zones.Rev. Geophys., 40(4), (2002)

26 Matthew G. Knepley et al.

21. van Keken, P., Kiefer, B., and Peacock, S.: High-resolution models of subduction zones:
Implications for mineral dehydration reactions and the transport of water into the deep
mantle.Geochem. Geophys. Geosys., 3(10), (2003)

