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1 Introduction

Regions of partially molten rock in the Earth’s mantle are of interest to Earth scientists, being key to under-
standing and predicting volcanism and the development of the mantle. Observations and experiments must be
carried out in laboratories, while theory and models are also studied and developed to better match and explain
the observations. In this article we consider a low-porosity system in which magma flows in the pores in a matrix
of solid grains. The system at the grain-scale is important in explaining the model of an anisotropic viscosity
[Takei and Holtzman, 2009a,b,c, Katz and Takei, 2013a] but, by averaging over a representative volume element
[Katz and Spiegelman, 2012], the system is considered a continuum for the purposes of the equations.

In the model of viscous anisotropy, which was developed by Takei and Holtzman [2009a,b,c] using experi-
mental evidence from Daines and Kohlstedt [1997] and Zimmerman et al. [1999], and which has been studied by
Butler [2012] and Katz and Takei [2013a,b], we consider a matrix of solid grains with liquid magma flowing in
channels between the grains. The porosity is assumed to be small: Takei and Holtzman [2009c] consider φ lying
between about 0.02 and 0.189; Butler [2012] uses an initial value of φ0 = 0.01 and allows 0 ≤ φ ≤ 0.02; and Katz
and Takei [2013a,b] consider φ0 = 0.05 and φ ≤ 0.2. Anisotropy, caused by a reduced contact area between
grains, develops in the direction of the largest principal stress, leading to a direction-dependent viscosity [Takei
and Holtzman, 2009a].

There has been experimental work on simple shear and torsion, investigated by Holtzman et al. [2003] and
King et al. [2010]. Katz and Takei investigated the theory of these configurations using the model of anisotropic
viscosity, and presented a qualitative explanation of some of the observations [Katz and Takei, 2013a,b]. Katz
and Takei also considered planar Poiseuille flow between two parallel plates. Here, we investigate gravity-driven
Poiseuille flow in a cylindrical pipe, employing the same anisotropy model used by Katz and Takei. This will
build on their work and will be more suited for comparison with new experiments which are being undertaken
in pipe Poiseuille geometry.

In this article we recall the equations governing the system, which we study first under the (problematic)
simplification of uniform anisotropy and later in their full, non-linear, form. In our work, we discuss the problems
associated with the model of uniform anisotropy, and propose a non-uniform approximation to the anisotropy
parameters. Using such an approximation, we still need only solve linear differential equations for the velocity,
but we obtain results very close to the numerical solution of the full problem at t = 0. The finite time, numerical
solutions form the final part of our theoretical investigation.

The results, and comparison with observations, will give more information to theorists regarding where the
current model works and where it fails, and enable further refinement of the model to better fit experimental
results.

2 Governing Equations

2.1 Equations

The governing equations are derived from the conservation of mass and the force balance on each of the two
phases. Combining these, and assuming zero melting rate, the system can be written in terms of the following
variables:

φ porosity
vS solid velocity
K permeability (dependent on porosity)
ηL liquid viscosity
pL liquid pressure
ρL, ρ liquid density, phase-averaged density (assumed to be equal).
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Letting ekl be the strain-rate tensor of the solid phase, the governing equations can be written in the following
form [Katz and Takei, 2013a, Takei and Holtzman, 2009c, Katz and Spiegelman, 2012, Rudge et al., 2010]:

∂φ

∂t
= ∇ · ((1− φ)vS), (1)

∇ · vS = ∇ ·
(
K

ηL
(∇pL − ρLg)

)
, (2)

∂ip
L = ∂j(σij + pLδij) + ρgi, (3)

σij + pLδij = cijklekl. (4)

The fourth-rank tensor cijkl is the viscosity tensor, which in this case will incorporate the anisotropy into the
system. The explicit form of cijkl is given below, in equation (17).

In cylindrical polar coordinates (r, θ, z) defined so that g = −gẑ, and the axis of the cylinder lies along the
z-axis, equations (1), (2) and (3) become:

∂φ

∂t
=

1

r

∂

∂r
(r(1− φ)vr) +

1

r

∂

∂θ
((1− φ)vθ) +

∂

∂z
((1− φ)vz), (5)

1

r

∂

∂r
(rvr) +

1

r

∂vθ
∂θ

+
∂vz
∂z

=
1

r

∂

∂r

(
Kr

ηL

∂pL

∂r

)
+

1

r

∂

∂θ

(
K

ηLr

∂pL

∂θ

)
+

∂

∂z

(
K

ηL

(
∂pL

∂z
+ ρLg

))
, (6)

∂pL

∂r
=

∂

∂r
(σrr + pL) +

1

r

∂

∂θ
σrθ +

σrr − σθθ
r

+
∂

∂z
σrz, (7)

1

r

∂pL

∂θ
=

∂

∂r
σrθ +

1

r

∂

∂θ
(σθθ + pL) +

2σrθ
r

+
∂

∂z
σθz, (8)

∂pL

∂z
=

∂

∂r
σrz +

1

r

∂

∂θ
σθz +

σrz
r

+
∂

∂z
(σzz + pL)− ρg. (9)

We consider only axisymmetric cases, where
∂vr
∂θ

=
∂vz
∂θ

=
∂pL

∂θ
=
∂φ

∂θ
= 0, and in which vθ = 0. Using

the notation of Katz and Takei [2013a,b], we assume the maximal principal stress, σ3, is in the r-z plane, at
an angle Θ to the z axis, and let α be the magnitude of anisotropy. It will be useful throughout this article to
define

A = rξ −
2

3
− α cos2 Θ sin2 Θ, (10)

B = rξ +
4

3
− α sin4 Θ, (11)

C = rξ −
2

3
, (12)

D = α cos Θ sin3 Θ, (13)

E = α cos3 Θ sin Θ, (14)

F = rξ +
4

3
− α cos4 Θ, (15)

where, rξ is the bulk/shear viscosity ratio, taken to be a constant of about 5
3 [Katz and Takei, 2013a].

With these assumptions, eij is given as

(eij) =



z r θ

z
∂vz
∂z

1

2

(
∂vz
∂r

+
∂vr
∂z

)
0

r
1

2

(
∂vz
∂r

+
∂vr
∂z

)
∂vr
∂r

0

θ 0 0
vr
r

 (16)

and the viscosity tensor (using the model in Katz and Takei [2013a,b]) has components

(cijkl) = η0e
−λ(φ−φ0) ×



zz rr θθ rθ θz zr

zz F A C 0 0 −E
rr A B C 0 0 −D
θθ C C C + 2 0 0 0

rθ 0 0 0 1 0 0

θz 0 0 0 0 1 0

zr −E −D 0 0 0 A− C + 1


, (17)
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where λ is a constant, typically taken in the range 25–27 [Takei and Holtzman, 2009c, Katz and Takei, 2013a],
and the remaining components of the fourth-rank tensor cijkl follow by symmetry.

Finally, a relation must be specified between the permeability K and porosity φ. For small porosity, as
considered here, K is typically assumed to be proportional to φn, with n ≈ 1–3 [D.McKenzie, 1989, Riley and
Kohlstedt, 1991, Faul, 1997, Wark and Watson, 1998].

2.2 Scaling and non-dimensionalisation

Let H be the radius of the cylinder, and let U =
ρgH2

η0
(giving a typical order of magnitude of a velocity

through the pipe). Then we introduce rescaled, dimensionless variables as follows:

X =
x

H
, V =

vS

U
, K∗ =

K

K0
=

(
φ

φ0

)n
,

σ∗ij =
σij + pLδij(

η0U

H

) , P =
pL

ρgH
, e∗ij =

eij(
U
H

) ,

c∗ijkl =
cijkl
η0

, τ =
t(
H

U

) .

For the remainder of this article we shall use the variables r and z to denote the dimensionless radial and
vertical coordinates.

We also define the non-dimensionalised compaction length, R, by R =
1

H

√
(rξ + 4

3 )η0K0

ηL
. This is a key

parameter, depending on the material properties of the solid and liquid phases. If the porosity is initially
constant, R defines the radial distance from the boundary over which matrix compaction is expected to occur
[McKenzie, 1984].

Substituting the non-dimensional variables into the governing equations, and using the above assumptions,
we get the non-dimensionalised system:

∂φ

∂τ
= ∇ · ((1− φ)V), (18)

∇ ·V =
R2

rξ + 4
3

∇ · (K∗(∇P + ẑ)), (19)

∂P

∂r
=

∂

∂r
σ∗rr +

σ∗rr − σ∗θθ
r

+
∂

∂z
σ∗rz, (20)

∂P

∂z
=

∂

∂r
σ∗rz +

∂

∂z
σ∗zz +

σ∗rz
r
− 1, (21)

where

σ∗zz =e−λ(φ−φ0) ×
[
F
∂Vz
∂z

+A
∂Vr
∂r

+ C
Vr
r
− E

(
∂Vz
∂r

+
∂Vr
∂z

)]
, (22)

σ∗rr =e−λ(φ−φ0) ×
[
A
∂Vz
∂z

+B
∂Vr
∂r

+ C
Vr
r
−D

(
∂Vz
∂r

+
∂Vr
∂z

)]
, (23)

σ∗θθ =e−λ(φ−φ0) ×
[
C
∂Vz
∂z

+ C
∂Vr
∂r

+ (C + 2)
Vr
r

]
, (24)

σ∗rz =e−λ(φ−φ0) ×
[
−E∂Vz

∂z
−D∂Vr

∂r
+ (A− C + 1)

(
∂Vz
∂r

+
∂Vr
∂z

)]
. (25)

2.3 Boundary conditions

The boundary conditions are Vr = Vz = 0 at r = 1. We also require that the solution is non-singular at the

centre line r = 0, and expect that this will lead to the symmetry conditions Vr =
∂Vz
∂r

=
∂P

∂r
= 0 at r = 0.

We make the mathematical assumption of an infinitely long pipe. This means that for the unperturbed

(base state) solution, we have
∂Vr
∂z

=
∂Vz
∂z

=
∂P

∂z
= 0.

As a final boundary condition, since the pressure was only defined up to an additive constant, we choose
(without loss of generality) that P = 0 at r = 0.
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2.4 The ‘base state and perturbations’ approach

Using the terminology of Katz and Takei [2013a,b] for an approach also used by Takei and Holtzman [2009c]
and Butler [2012], we consider first the ‘base state’ solution (with index 0), which will be the z-independent
solution to the system of equations with an initially uniform porosity, φ0, and then we consider the response of
the system to small perturbations in the initial porosity, of order ε� 1:

φ = φ0 + εφ1 +O(ε2), (26)

P = P0 + εP1 +O(ε2), (27)

V = V0 + εV1 +O(ε2). (28)

We also define the ‘compaction rate’ by C ≡ ∇ ·V, and write

C = C0 + εC1 +O(ε2). (29)

For the base state at τ = 0, equations (19) and (20) can be combined, and equations (19) and (21) can
be integrated. Applying the condition that there is no singularity at r = 0, we find that the initial base state
solution must satisfy

−D∂Vr
∂r

+ (A− C + 1)
∂Vz
∂r

=
r

2
(30)

and

Vr =
R2

rξ + 4
3

[(
B − D2

A− C + 1

)(
∂2Vr
∂r2

+
1

r

∂Vr
∂r

)
− (C + 2)

Vr
r2
− D

A− C + 1

]
. (31)

3 Uniform anisotropy analysis

3.1 The uniform anisotropy model

For an anisotropic viscosity, we have non-zero anisotropy parameters, Θ and α. These will vary with position,

and satisfy the symmetry conditions
∂α

∂r
= 0 and Θ = 0 at r = 0. (In fact Θ should be an odd function of r,

and α should be an even function.) However, following the pattern of Katz and Takei [2013a], in this section
we consider imposing constant and non-zero Θ and α. This is a simplified case of viscous anisotropy, intended
to give a first comparison of the isotropic and the anisotropic system. This section will allow a full comparison
of the 2D Poiseuille results of Katz and Takei with this cylindrical Poiseuille flow.

We expect difficulties at r = 0, where a non-zero Θ will prevent the equations, and the solution, from being
smooth. The results of this section are not, therefore, being presented as a possible solution, but as a first step
into the model of viscous anisotropy and a means of comparison with the work of Katz and Takei. Solving the
equations under this approximation is a step which can be tackled analytically, and one for which we have an
explicit mathematical formula for the solution, in addition to the numerical results. This lets us understand
exactly the manner in which the solutions fail at r = 0, and makes it clear that a better model is required.

3.2 Base state solution at τ = 0

With constant anisotropy, equation (31), after a suitable transformation, is a forced modified Bessel equation

of order ν =

√
C + 2

B − D2

A−C+1

. The solution which satisfies the boudary condition at r = 1 and is finite at r = 0

is given explicitly as

V 0
r (r) = Vp(r)−

Vp(1)

I√ω2
(
√
ω1)

I√ω2
(
√
ω1r), (32)

where Vp(r) =
∑∞
n=0 anr

n,

with an =


0 for n = 0 or n odd
ω3

4− ω2
for n = 2

ω1an−2
n2 − ω2

for n even, n > 2

(33)

and ω1 =
rξ + 4

3

R2(B − D2

A−C+1 )
, ω2 =

C + 2

B − D2

A−C+1

, ω3 =
D

(A− C + 1)B −D2
. (34)
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Here Iν denotes the modified Bessel function of the first kind of order ν. This is the solution for any constant
α and Θ, provided ω2 6= n2 for n = 0, 2, 4, 6, 8, . . . .

Having found the radial velocity, the vertical velocity which satisfies V 0
z (1) = 0 is given by

V 0
z =

r2 − 1

4(A− C + 1)
+

D

A− C + 1
V 0
r . (35)

We can now also get a solution for P0(r) from equation (20).
Alternatively, the system of linear ODEs for V 0

r , V 0
z and P0 can be solved numerically. See figure 1 for results

of numerical integration using the Chebfun software. For information on Chebfun and chebops, see Trefethen
and Driscoll [2011], Trefethen [2013], Driscoll et al. [2008].
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Figure 1: Solution at τ = 0, with α = 2, Θ = π
4

, rξ = 5
3
. Solid lines indicate R = 0.1 and dashed lines indicate

R = 1.

Using the series representation of the modified Bessel function [Baricz, 2010], we see that the condition
∂V 0

z

∂r
= 0 at r = 0 will be satisfied if and only if ω2 > 1, as this is when I√ω2

has zero derivative at the origin.

Either way, the solution is not analytic at r = 0 (unless
√
ω2 happens to be an integer). This problem is a result

of the assumption that Θ 6= 0 in the centre. If we were to use a model in which Θ = 0 at r = 0, then V 0
r = 0

and
∂V 0

z

∂r
= 0 at r = 0 would follow straight away from equations (30) and (31).

At τ = 0,
∂φ

∂τ
= (1 − φ0)C0, so the plots of C0 in figure 1 predict that the porosity will increase at larger

radii and decrease at smaller radii, i.e. the liquid will move outwards towards the boundary. However, figure 1

indicates a problem with the solution at r = 0. We really require that
∂C0
∂r

= 0 at r = 0, since C0 should be an
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even function of r. When we make use of equation (31) we find that

∂C0
∂r

= ω3 + ω1V
0
r +

(ω2 − 1)V 0
r

r2
, (36)

which will indeed be 0 at r = 0 under a model of Θ satisfying the symmetry condition that Θ = 0 at r = 0, but
is infinite under the current constant anisotropy assumption.

The problem of C0 having infinite derivative at the centre is also evident in both the planar Poiseuille and
the torsion analysis of Katz and Takei [2013a], resulting from (respectively) the assumptions of non-zero Θ and
non-zero α at the origin. For torsion, as for pipe Poiseuille, the radial velocity equation under the uniform
anisotropy assumption (see Katz and Takei [2013a]) predicts a non-analytic V 0

r . The velocity in the plane
Poiseuille case, given in section 3.4.1, becomes problematic when the solution is continued to the whole of
−1 ≤ x ≤ 1 with the appropriate symmetry.

3.3 Growth of porosity perturbations at τ = 0

Before considering the problem of finding a model of Θ and α that is physically possible, I consider the growth
of harmonic perturbations to the base flow. The following calculations for the leading order growth rate will be
valid whether A, B, C, D, E, F are constants or non-constants.

The O(1) terms in the equations already balance; now we concentrate on balancing those of order ε. We
have three equations — coming from (19), (20) and (21) — which determine P1, V 1

r and V 1
z ; we then find the

value of
∂φ1
∂τ

at τ = 0 from equation (18).

We consider perturbations of the form

φ1(r, z, τ) = exp

ik ·
x−

τ∫
0

V0dt

+ ψ(r, z, τ)

 (37)

where k = kr r̂ + kz ẑ with kr and kz constants, and we define

k =
√
k2r + k2z , (38)

s+ iΩ =
∂ψ

∂τ
, (39)

with ∇ψ, ∇(s+ iΩ) = o(k) as k →∞. (40)

At τ = 0 these are cones of locally harmonic waves moving with the base state flow, and equation (40) is
interpreted as saying that both ψ and the growth rate s+ iΩ are ‘slowly varying’ in space (they only vary over
a lengthscale much longer than the wavelength). Fixing τ = 0, neglecting all but the leading order terms as
k →∞, and writing

V 1
r = Ṽrφ1, V 1

z = Ṽzφ1, P1 = P̃ φ1, (41)

with Ṽr, Ṽz and P̃ also only slowly varying, the equations can be inverted to give expressions for P̃ , Ṽr and Ṽz
which are valid to leading order. Then to obtain the growth rate, we use equation (18), leading to

s+ iΩ ∼ (1− φ0)(ikrṼr + ikzṼz)−∇ ·V0 (42)

as k →∞, to find that the growth rate at τ = 0, to leading order in k, is

s ∼ 1− φ0
N3N6 −N4N5

[(N1N6 −N2N5)W1 + (−N1N4 +N2N3)W2]− C0 (43)

where

N1 = ikr, (44)

N2 = ikz, (45)

N3 = Bk2r + (A− C + 1)k2z − 2Dkrkz, (46)

N4 = −Dk2r − Ek2z + (2A− C + 1)krkz, (47)

N5 = −Dk2r − Ek2z + (2A− C + 1)krkz, (48)

N6 = (A− C + 1)k2r + Fk2z − 2Ekrkz, (49)
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and

W1 = −λikr(B
∂V 0

r

∂r
+ C

V 0
r

r
−D∂V

0
z

∂r
)− λikz(−D

∂V 0
r

∂r
+ (A− C + 1)

∂V 0
z

∂r
), (50)

W2 = −λikr(−D
∂V 0

r

∂r
+ (A− C + 1)

∂V 0
z

∂r
)− λikz(A

∂V 0
r

∂r
+ C

V 0
r

r
− E∂V

0
z

∂r
). (51)

We also find that Ω = o(1) as k →∞, and that (since s = O(1)) we have found all the terms of s+ iΩ which
do not decay in this limit.

In the isotropic case, α = 0, the above result for the growth rate s reduces to

s ∼ (1− φ0)λrkrkz

(rξ + 4
3 )k2

(52)

as k →∞. Let us write
k = k(cos θr̂ + sin θẑ); (53)

then as k → ∞ the growth rate s is proportional to sin(2θ) and so is largest for the perturbations with angle
θ = 45◦. This is illustrated in figure 2a.

With constant, non-zero, values of Θ and α, 45◦ is no longer the most favourable angle for growth. Figures
2b and 2c show how the leading order growth rate s varies with the angle θ of the perturbation when Θ = π

4
and α = 2. These show that one effect of the anisotropy is to split the peak seen in figure 2a into two peaks
(corresponding to the fastest growing disturbances at τ = 0), one at an angle less than 45◦ and one at an angle
greater than 45◦. This effect was also found by Katz and Takei [2013a] who applied this theoretical approach to
simple shear, plane Poiseuille and torsion. The positions and relative heights of the peaks depend on the value
of the anisotropy angle Θ. In the case Θ = π

4 (figures 2b and 2c), the peaks occur at angles of approximately
14–15◦ and 72–74◦. For values of constant Θ less than π

4 , the low-angle peak is dominant, and occurs at an
angle larger than 15◦.

3.4 Comparison with constant anisotropy plane Poiseuille flow at τ = 0

3.4.1 Base state

We compare pipe and plane Poiseuille results for constant α, and Θ = π
4 , when the velocity has been non-

dimensionalised using the scaling U =
ρgH2

η0
, where H is either the radius of the cylinder or half the width of

the channel.
The planar solution in this case (in the x-z plane) has the following base state velocity on 0 ≤ x ≤ 1:

V 0
x =

R2α

(rξ + 4
3 )(4− α)

(
sinh βx

R

sinh β
R

+
sinh β(1−x)

R

sinh β
R

− 1

)
, (54)

V 0
z =

2

4− α
(x2 − 1) +

α

4− α

(
V 0
x − (x− 1)

∂V 0
x

∂x

∣∣∣∣
x=0

)
, (55)

where β =

√
rξ + 4

3

rξ + 4
3 −

α
4−α

. This solution is computed by solving the equations in Cartesian coordinates on

0 ≤ x ≤ 1 and applying boundary conditions V 0
x =

∂P0

∂x
=
∂V 0

z

∂x
= 0 at x = 0, and V 0

x = V 0
z = 0 at x = 1.

The solutions for the base state velocities in two geometries are very similar but there are notable differences.
Figure 3 compares V0 for plane and pipe Poiseuille when R = 0.1, and with α = 2, Θ = π

4 , and rξ = 5
3 . It

shows that the horizontal velocities are approximately equal in both shape and magnitude. (In fact there are
differences at r = 0, with the radial pipe flow having zero derivative there.) The two vertical velocities have
almost the same shape, but differ by a factor of two (as we expect when we consider the solutions to isotropic
Poiseuille flow in the two different geometries). So one difference in the cylindrical geometry appears to be that
there is a larger ratio of the horizontal to vertical velocity components than there is in in the planar case.

3.4.2 Growth of porosity perturbations

The plots of the growth rates are remarkably similar to the corresponding plots for plane Poiseuille [Katz and
Takei, 2013a]. Indeed, when we compare the equations in the pipe and plane geometries, and consider any term
in which ∂

∂r + 1
r , instead of just ∂

∂x in the planar case, is applied to the perturbation variables (with index 1),
we see that the extra term (coming from the curved geometry) is neglected, since it is of a lower order in k than

the term coming from the derivative. Nevertheless, there are ‘cylindrical’ terms (e.g.
V 0
r

r ) which appear in W1

and W2, showing that the growth rates still depend in some way on the cylindrical geometry.
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(b) Predicted growth rate for R = 0.1, with α = 2 and
Θ = π
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(c) Predicted growth rate for R = 1, with α = 2 and
Θ = π
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(d) Predicted growth rates using the new model for Θ and
α, and R = 0.1, σsat = 1.
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(e) Predicted growth rates using the new model for Θ and
α, and R = 0.1, σsat = 2.
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(f) Predicted growth rates using the new model for Θ and
α, and R = 0.1, σsat = 4.

Figure 2: Predicted growth rates, s, as a function of perturbation angle θ: in the isotropic case (2a); with the uniform
anisotropy model (2b, 2c); and with the new approximate forms of Θ and α in equations (60)–(62) (2d, 2e, 2f). Here
rξ = 5

3
, λ = 27, φ0 = 0.05 and n = 2.
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Figure 3: Comparison of pipe Poiseuille (solid line) and plane Poiseuille (dashed line) base state velocities when
R = 0.1, α = 2, Θ = π

4
, rξ = 5

3
.

4 Variable anisotropy analysis

4.1 Non-uniform model for initial anisotropy

So far, we have considered the angle of anisotropy (measured from the vertical) to be constant. As we have
already noted, this is not possible for physical reasons, creating problems at r = 0. If the equations do not
represent a physically possible situation at the centre then nor will the solution.

Another important consideration is how well the model used for Θ represents what it is intended to, namely
the angle between the z-axis and the maximum principal stress. There is also a theory for how α should depend
on the components of the stress tensor, and we would like a model which agrees with it. According to the model
presented in Katz and Takei [2013a], the expressions from which we determine Θ and α are:

cos(2Θ) =
σzz − σrr
σ3 − σ1

, sin(2Θ) =
2σrz

σ3 − σ1
, (56)

α = 2 tanh

(
2(σ3 − σ1)

σsat

)
, (57)

where σsat is a constant depending on the material. These equations give

2Θ = arg(2σrzi+ σzz − σrr), (58)

α = 2 tanh

(
4σrz

σsat sin(2Θ)

)
= 2 tanh

(
2(σzz − σrr)
σsat cos(2Θ)

)
. (59)

(Both here and below, “arg” is the complex argument of the number in the range (−π, π], and will be found
using the MatLab function atan2.)

Figures 4a and 4b illustrate that for small values of the non-dimensionalised compaction length R, the
assumption Θ = π

4 gives a self-consistent result on much of the domain, but fails in a region near r = 0. For
R = 1 the assumption that Θ = π

4 is even more strongly contradicted by the solution, with Θ varying gradually
across the whole domain. Similarly, the assumption of constant α will not be consistent with the solution.

There is a need, not only for a model which obeys the conditions for Θ and α at r = 0, but for one which is
consistent. Here, we have considered alternative forms of Θ and α to put into the equations before solving them,
with the aim to find a more consistent model and solution for the base state. This method (specifying forms
of Θ and α before solving the differential equations) will retain the advantage that the differential equations
are linear in V 0

r and V 0
z . As such, we are able to continue using linear chebops and the Chebfun software to

integrate the differential equations. (In contrast, the full equations are non-linear.) It may also be advantageous
to have analytic expressions giving the approximate forms of the anisotropy parameters Θ and α.
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Figure 4: Plots of Θ (in degrees) vs r investigating whether the assumption was valid.

With a model of the form

Θ =
1

2
arg(ri+ f1(r)), α = 2 tanh (f2(r)) , (60)

with f1(r) = m1(1− 2r), and f2(r) =
2r

σsat
+m2 exp

(
− 2r

m2σsat

)
(61)

(where m1 and m2 are constants which may depend on R and σsat), a reasonable level of self-consistency can
be achieved. For large ranges of R and σsat, suitable expressions for the constants m1 and m2 are

m1 = tanhR× (0.3 exp (−0.6σsat) + 0.03) , m2 =
2m1

σsat
. (62)

Note that, unlike before, these expressions for the anisotropy parameters satisfy Θ = 0 and
∂α

∂r
= 0 at r = 0,

and so we expect the corresponding solution to be more regular at the centre. However for a model which is
completely smooth at r = 0 (and hence a completely smooth solution), we really require f1 and f2 to be even
functions of r.

The self-consistency of the model defined by equations (60)–(62) is illustrated by examples in figure 5. These
graphs (together with similar results for other values of R and σsat) confirm that a model of this form is more
consistent. A further check that this model is an improvement is given in figure 6, which shows that C0 now
has zero derivative at r = 0. Having achieved both regularity at the level we are considering, and consistency,
we conclude that (provided we do not want to take any more derivatives) the chosen forms of f1, f2, m1 and
m2 are reasonable approximations, and we leave the possible development of a smooth model for future work.

Figure 6 also shows that at larger radii, the two models give similar compaction/decompaction rates, and
that the prediction of increasing porosity at the boundary was correct.

Figure 7 compares the solutions computed with the original (uniform α and Θ) model and the new model
proposed above. The numerical solution of the full non-linear equations — which will be discussed in section 4.2
— is also plotted, indicating that (unless we start taking more derivatives) the new model of Θ and α gives a
very good approximation to the true solution at τ = 0.

With the new model, we can also consider the growth rate s of perturbations. The leading order growth
rate of the perturbations considered in section 3.3 are still given by equation (43), but now the quantities A to
F are non-constant. Results are plotted in figures 2d, 2e and 2f. When σsat ≤ 1 (figure 2d) the plots of s are
very similar to before, and the peaks occur for approximately the same angles θ as were found earlier, at ≈ 15◦

and ≈ 72.5◦. But for larger σsat, the plots of s become more similar to the isotropic case, without the low- and
high-angle peaks, but with just one peak at θ = 45◦. (See figure 2f.) For intermediate values of σsat (figure 2e),
perturbations of all angles between about 20◦ and 80◦ are predicted almost equal growth rates.
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Figure 5: Assumed and resulting forms of Θ and α in the new model. Some examples.
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4.2 Numerical solution of the full equations

In this section, the governing non-linear differential equations are solved numerically. At a fixed time, using the
viscosity tensor and the porosity from the previous time step, the partial differential equations (19), (20) and (21)
are discretised in space using finite difference approximations to derivatives. This yields a system of non-linear
algebraic equations, which are solved for the velocity and pressure using Newton’s method. Then, using a finite
difference approximation to equation (18) to implement a forward time-step, the porosity is updated. This is
the method described in Katz and Takei [2013b], and is implemented using the Portable, Extensible Toolkit for
Scientific Computation (PETSc), discussed in more detail by Katz et al. [2007].

The values of parameters used are n = 2, rξ = 5
3 , λ = 27, and φ0 = 0.05, and the numerical solution for

τ ≥ 0 is investigated. Since the model is based on the assumption that φ is small, we consider only the results
at small times τ , when the porosity remains less than 0.1 throughout the domain.

4.2.1 Base state

The program is set to add “white noise” to the initial porosity, of a specified maximum amplitude. For the base
state, for which we require an initially uniform porosity, the amplitude of the white noise is set to 10−9.

From the solution at τ = 0, we know that the porosity is increasing at larger radii and is decreasing nearer
the centre. Figure 8a shows the porosity field solution at times τ = 0.00, 0.04, 0.08, 0.12, 0.16, 0.20, while
figures 8b and 8c plot the radial and vertical velocity components at these times. It is worth noting briefly
that the anisotropy parameters Θ and α do evolve in time, but do not experience large changes over the time
interval considered here.

As time passes, the model predicts that the peak radial velocity moves outwards and that more and more
liquid moves to the boundary. The solution also predicts a downward acceleration which is increasing in time.
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Figure 8: Base state evolution of the porosity and velocity fields between τ = 0 and τ = 0.20. Here R = 1, σsat = 1,
n = 2 and rξ = 5

3
. Similar results (sometimes over a different time scale) are obtained with other parameter values.

4.2.2 Growth of porosity perturbations

To investigate the development of small perturbations, white noise is added to the (otherwise uniform) initial
porosity. Figure 9 shows the porosity field in three cases (corresponding to R = 0.05, R = 0.1 and R = 0.3),
having evolved from an initial porosity of φ0 = 0.05 with white noise added to a maximum amplitude of 0.01.
Similar results are generated when n = 3 and when σsat takes different values.

The results show a similar outcome to the unperturbed system, with the fluid moving towards the walls of
the pipe. At the very edge of the pipe, the fluid begins to accumulate in a thin layer.

However, this is no longer the only development of the porosity field. Now, as an effect of the perturbation,
there is some evidence of porosity bands forming. These form quite near the edges, but before the region of
very high porosity. Our results show the bands forming at angles of ≈ 20◦ to the vertical. These bands only
represent a small difference in porosity (especially when compared to the build-up at the wall of the cylinder),
but they occur consistently, and at the same angle, in simulations with small values of R. As R becomes larger
(R ≥ 0.2, say), the bands are no longer visible. This is illustrated in the final plot of figure 9.

For comparison, figure 10 shows the results of running the numerical simulation with α and Θ set to 0 (i.e.
the isotropic case), and an initial random porosity perturbation. These plots show that porosity bands are also
predicted in the isotropic case, but that their angle to the vertical is close to 45◦. In the isotropic case the
bands are predicited not just for small R but also for R = 1.

5 Discussion

Here we have investigated the effects on anisotropic viscosity on pipe Poiseulle flow (using a particular model
of the viscosity tensor).

While it is extremely useful to compare these predictions with experiments, there are several differences
between the system considered in this work and the experimental procedure. In experiments, material is often
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Figure 9: Porosity fields showing the migration of magma to the edge of the domain and, for small R, high-porsity
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forced through the pipe under high pressure, whereas here we consider the driving force to be gravitational.
Here, too, we consider an infinitely long pipe which is clearly not achievable in practice. Instead, a finite
tube is used and fluid is inserted at one end. The boundary conditions will therefore be very different in the
experimental configuration — but it will still be interesting to compare the observed flow in the central region
of the pipe with the above results. One other important difference is that we have considered only axisymmetric
flow and axisymmetric perturbations. In practice any disturbances to the initial porosity are unlikely to be
axisymmetric, and we have not here considered how such perturbations would be expected to grow. This is a
possible basis for further investigation.

First we considered a base state with an initially uniform porosity, and used the equations to predict matrix
compaction driving the fluid radially outwards. This base state segregation is in contrast to what is found for
an isotropic system, which has zero radial velocity and in which the porosity field does not evolve in time.

Then we considered theoretical growth rates of disturbances to the porosity field at τ = 0. The perturbations
whose growth rates were considered were just one very particular type of perturbation. It is unclear how much
can be determined about general disturbances by considering these axisymmetric, locally harmonic waves at
τ = 0, with asymptotically short wavelength. But what the theoretical work does show is that the development
of perturbations is expected to be quite different from development of perturbations in an isotropic medium.
The results also start to suggest why high porosity bands may form at angles of ≈ 15◦ to the vertical, whereas
angles of 45◦ (favoured in the isotropic system) are less favourable for growth.

In the numerical simulation we added random noise to the initial porosity, and found that over time, high-
porosity bands formed at an angle to the vertical which was similar (but not identical) to an angle having a
high theoretical growth rate. The numerical solutions at later times also continue to predict liquid migration
to the boundary.

The effects of an anisotropic viscosity for pipe Poiseuille flow are similar to those predicted by Katz and
Takei [2013a,b] for plane Poiseuille flow, both in terms of the base state segregation of the liquid towards the
wall and in terms of the development of high-porosity bands at an angle of about 15–20◦ to the vertical.

When the anisotropic viscosity results are compared with experimental results we see some similarities (in
general terms), but also some major differences as time passes. The experiments do produce bands at low angles
(≈ 15–20◦) to the vertical. It is worth investigating whether these bands form at all values of R or just at small
R, as our results only showed visible bands when R was less than about 0.2. Experimental observations also
show the liquid migrating outwards to the boundary. However, the extent to which this liquid redistribution
actually occurs is much smaller than that predicted by the numerical simulation.

The numerical simulation, if allowed to run to large τ , produces ever-increasing values of φ at the edges of
the domain, which become much larger than the model was designed for. But, even at low porosities which
should be within the range being modelled, the simulation predicts much more radial redistribution of fluid
than actually occurs. This appears to be a result of the equations themselves, rather than just a numerical
error. Another improbable consequence of the equations is that the vertical acceleration is increasing with time.
Since the solutions computed here are physically incorrect, it is questionable how much we can use the results
to explain even the ‘general’ observations of fluid moving outward and low-angle bands forming.

6 Conclusions

The model of viscous anisotropy which was employed in this study of pipe Poiseulle flow predicts growth of
porosity at the wall of the pipe, and development of high-porosity bands at 15–20◦ to the vertical. While
these qualitative features are both reported experimentally, the quantitative predictions of the model are very
different to physical observations. Given this, it can not yet be determined whether an anisotropic viscosity is
the correct explanation for the qualitative results.

Clearly some modification is needed in the equations or model. This may mean changes to:
(i) the stress-strain relationship — this could be a change to the form of the viscosity tensor (cijkl), or a

new, non-linear relationship;
(ii) the form of the function K(φ);
(iii) the assumption of constant rξ (in general it could depend on φ).
Various alternative stress-strain relationships have been proposed, but none of them yet has been able to

fully match the experimental observations.
Despite the need for alterations to the anisotropic viscosity model considered in these notes, our work does

suggest that an anisotropic viscosity remains one possibility. A viscosity of this type could play a part in
determining the redistribution of porosity and the growth of perturbations at low angles to the vertical. More
work will need to be done, and the various models developed some more, before the system can really be
understood.
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