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Abstract

Partially molten rock is widely understood to be a melt-saturated, granular medium.

However, the effect of granular interactions has rarely been incorporated into its mod-

elling. This study explores the role of dilatancy in concentrating partial melts into

low-angle bands. Strain-evolving models of simple shear and Poiseuille flow based on

the framework set out by Katz et al. (2024) are developed. It is found that dilatancy

can account for the low angles of melt-rich bands and the segregation of melts toward

magmatic intrusion margins. However, it fails to recreate the characteristic band widths

and spacings observed in experiments. It is concluded that the inclusion of the dila-

tant stresses is essential for accurately describing the rheology of partially molten rock.

Future models should look to take into consideration the effects of grain-scale physics

that can prevent bands forming at very high frequencies.

The simulations were implemented using Dedalus, a partial differential equation

solver that uses spectral methods. Its effectiveness is evaluated for geophysical fluid

dynamics research.
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1 Introduction

Partially molten rock (PMR) is a melt-saturated, granular medium (Katz et al., 2024). It is

present in the asthenosphere, magmatic intrusions and under mid-ocean ridges, transporting

momentum and chemical components between the Earth’s solid mantle and its surface. This

material plays a crucial role in mantle convection, magmatism, and the formation of new

crust. Therefore, if we want to understand these processes, it is essential that the rheological

properties of two-phase flows are accounted for.

1.1 Introduction to Melt Segregation

Figure 1: Field photos of dykes in (a) Liguria and (b) Lanzo showing the segregation of
feldspathic melt in lenses parallel to sub-parallel to the peridotite flow plane. Around the
lenses, there are melt depleted zones. Adapted from Nicholas (1986).

The enrichment of crustal rocks in incompatible elements relative to mantle xenoliths provides

compelling evidence that Earth’s outer layer is a product of its interior (Hofmann, 1988).

PMR rheology must facilitate mechanisms for melt to segregate from the solid matrix and

generate pathways for the extracted liquid to travel from the deeper mantle to the surface

to create new crust. Such networks have been evidenced by seismic studies that show sheets

of melt beneath rifts, orientated parallel to spreading centres (Kendall et al., 2005; Pilidou

et al., 2005), dyke and mantle peridotite outcrops (Quick, 1981; Nicolas and Jackson, 1982;

Nicolas, 1986) (Figure 1), as well as laboratory experiments on deforming olivine aggregates
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(Beeman and Kohlstedt, 1993). The field studies demonstrated that melt can localise tens

of kilometres below the Earth’s surface during deformation and recognised the importance

of permeability between regions of greater porosity, such as veins, for accelerating fluid flow

(Quick, 1981; Nicolas and Jackson, 1982; Nicolas, 1986). Stevenson (1989), elaborated on

this principle, suggesting that an increased fraction of melt could ‘soften’ PMR, reducing its

shear viscosity. This mechanism was predicted to enhance melt migration in these regions,

localising melt parallel to the minimum compressive stress from shearing, forming lenses at

45° to the shear planes.

To test this theory, several laboratory experiments have been carried out. The method-

ology outlined here is based on the studies by Holtzman et al. (2003, 2007) and Kohlstedt &

Holtzman (2009). PMR is simulated by creating an aggregate of 95-98% olivine grains, mixed

with smaller percentages of lower melting point materials, such as mid-ocean ridge basalts

and chromium. The olivine grains typically have a mean diameter of ∼10µm but may vary

in size within a sample. After hydrostatically hot pressing the samples to remove gas bub-

bles, they are placed under a confining pressure of 300 MPa and heated to 1225°C. This is

sufficient to melt the secondary minerals but preserve the solid olivine matrix to create a

simulant of PMR at 10 km depth with an initial porosity of 2-5%. These are deformed using

triaxial presses and are subsequently quenched for analysis. To gain a full understanding of

the dynamics, experiments that simulate simple shear and torsional shear are carried out.

Rheologies derived experimentally and mathematically must explain observations from both

configurations to be considered representative of PMR (Figure 2).
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Figure 2: Quenched experiments of shearing partially molten rocks modified from Yasuko
and Katz (2013). (a) and (c) show the results of a simple shear experiment by Holtzman
and Kohlstedt (2007) showing black low-angle bands rich in melt after being sheared. (b)
shows similar low-angle bands formed by a torsion experiment (King et al., 2010). Torsion
experiments also record melt migration towards the central rotation axis.

The first study to explicitly test Stevenson’s theory was Holtzman et al. (2003). Their

results showed PMR can produce melt-segregated sheets 15-20° from a shearing plane, given

that pressure gradients and the compaction length, the scale over which the melt flow and

solid deformation are coupled (McKenzie, 1984), are smaller than the sample size. However,

the latter requirement is not explained by classical PMR theory (McKenzie, 1984). Tradi-

tional thought suggests that the compaction length would only determine the maximum size

of band growth, as segregation can only occur if melt and solid phases are coupled. This

contradiction is justified by emphasising the role of short compaction lengths in limiting

fluid flows that equilibrate pressure gradients within the samples (Holtzman et al., 2003).

Consequently, they play an important role in facilitating the development of local pressure

gradients that drive melt redistribution and form bands. The study also highlighted a dis-

crepancy between the predicted band angles proposed by Stevenson (1989) and experimental
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observations. In a brief attempt to explain this, they call attention to the greater shear

strains recorded within bands, indicating a level of localisation and partitioning. Steven-

son’s analysis did not include this detail and assumed a constant strain rate. Holtzman et

al. (2003) argue that this could give rise to a balance between the angle of greatest band

growth, at 45°, and maximum strain partitioning, parallel to the shear planes, forming bands

at a compromise of 15-20°. It was further proposed that maintaining these low-angle bands

over a range of strains from 1.1 to 5 likely requires a source of nonlinearity in the system that

reinforces band growth at shallow angles instead of allowing them to be passively advected

by the background shear.

The notion that bands concentrate shear was further explored by Katz et al. (2006). Since

it is well known that mantle minerals can deform by power-law creep at high temperatures

and dislocation climb at moderate stresses, it could be assumed that PMR has an effectively

non-Newtonian rheology that would be able to concentrate strain and melts into bands.

However, the power-law exponent of the shear viscosity required to localise the melts at 15-

20° (n ∼ 4–6) are much greater than that measured by King et al. (2010) to be at 1.5 ±

0.3 with 95% confidence, an almost Newtonian rheology. The theory was further contested

by laboratory experiments in Newtonian diffusion creep regimes that also produced bands

(Rudge and Bercovici, 2015) and for its inability to reproduce the migration of fluids towards

the central axis seen in torsion experiments (Qi et al., 2015).

To address these challenges, numerous papers have sought to connect the observations

from torsion experiments with Newtonian rheologies, primarily by relating grain-scale pro-

cesses to the bulk properties of PMR. Takei and Holtzman (2009) suggested that the resis-

tance to deformation is reduced in the direction of minimum contiguity, where the contact

areas between neighbouring grains are at their lowest, resulting in the creation of melt bands.

However, low-angle bands only formed when the contiguity tensor aligned with the principal

stress directions, creating inherent viscous anisotropy (Takei and Katz, 2013). This is in

contention with the experimental findings that calculate a misalignment of 15° between the

8



contiguity tensor and principal stress direction (Qi et al., 2015; Qi et al., 2018).

Granular interactions are also affected by grain shape. Bercovici and Rudge (2015) iden-

tified that grains can undergo two forms of damage: interface damage, which reduces grain

roughness, and void-generating damage, which only reduces resistance to compaction. As

the latter cannot account for the non-linearity in effective shear viscosity, it cannot play a

dominant role in porosity band emergence. However, by reducing roughness, interface dam-

age can allow grains to slide over each other more easily and provide sharper pinning surfaces

that hinder grain size growth. This results in smaller, weaker grains that enable more strain

localisation and diffusion creep. However, grain size growth in PMR is poorly understood.

Therefore, it is difficult to assess the effectiveness of this mechanism in strain-evolving nu-

merical models. There is no literature to suggest that interface damage can reproduce the

melt migration under torsion.

Another major consideration regarding the origin of porosity bands is their characteristic

width and separation. Stevenson (1989) concludes that the separation will be some fraction

of the compaction length and the aforementioned studies do not predict a minimum frequency

for band formation (Katz et al., 2024). These ideas fail to adequately explain the experimental

data, which shows distinct bands forming at separations around an order of magnitude greater

than their widths (Holtzman et al., 2003).

Takei and Hier-Hajumder (2009) incorporated both the compaction and decompaction of

the solid matrix with changes in the melt fraction due to dissolution and precipitation into

their models. They argue that the latter processes are driven by interfacial tension, the cohe-

sive force between particles and grains, creating a chemical gradient. This occurs on length

scales smaller than the compaction length, called the diffusion length: the distance under

which the melt fraction evolves primarily by diffusion. The wavelength of the perturbation

in porosity determines which process is more dominant in driving melt transport. Shorter

wavelength perturbations and smaller grain-sized regions are primarily controlled by local

dissolution and precipitation (King, Hier-Majumder and Kohlstedt, 2011). This acts against
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melt segregation as the interfacial energy, which drives the interfacial tension, tries to reach

a minimum by smoothing out heterogeneities, resulting in homogenisation. Such processes

are known to occur after experiments are left to anneal post-shearing (Parsons et al., 2008).

Thus, a lower limit of band wavelength can be determined where the negative growth rate

from homogenisation is greater in magnitude than the decompaction-driven band growth rate

from shear.

Figure 3: Cartoon showing the nature of the diffuse interface between the densely packed
particles of the melt poor region and the less densely packed melt rich bands. The red is
indicates melt saturated pores and the green circles are olivine grains. Inspired by Bercovici
and Rudge (2016).

Bercovici and Rudge (2016) proposed that sharp melt-fraction gradients across a diffuse

interface (Figure 3) act as an effective interface, generating forces similar to surface tension.

This can induce a pressure term that acts like a capillary force in the narrow conduits of the

granular medium, smoothing out small-scale variations in porosity and acting against the

growth of high-frequency instabilities. While this explains the narrow width of melt bands

seen in laboratory experiments, it struggles to define a quantitative relationship between

band spacing and compaction length. They suggest that spacing may instead be controlled

by a non-linear effect whereby melt is only drained from the surrounding matrix at a larger

fraction of the compaction length than the band width. Alternatively, band spacing might
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still be governed by the homogenisation mechanism proposed by Takei and Hier-Majumder

(2009), as both processes are not mutually exclusive. These factors have not been fully

investigated in strain-evolving numerical models.

1.2 Introduction to Dilatancy and Elements of Granular Physics

In an effort to link band angles, the migration of melt in torsion experiments, and band

spacing, Katz et al. (2024) took inspiration from the theory of dense granular flows. Research

has well established that a solid phase can undergo net dilation relative to a surrounding

fluid due to shear (Reynolds, 1885; Boyer, Buazelli and Pouliquen, 2011), introducing an

additional source of stress to the system. Furthermore, Morris & Boulay (1999) predicted

that suspensions of neutrally buoyant particles can radially segregate liquid and solid phases

due to dilatant forces (Morris & Boulay, 1999), as seen in PMR torsion experiments (Qi

et al., 2015; Qi & Kohlstedt, 2018), and Besseling et al. (2010), showed that dilatancy in

dense suspensions can produce similar banding instabilities analogous to those theorised by

Stevenson (1989). These studies strongly hint that dilatancy stresses could play an important

role in PMR rheology.

Granular suspensions can also experience non-local fluidity (Kamrin & Koval, 2012). This

is when the flow response to stress in a location is sensitive to the surrounding region, as

particles need to rearrange on a grain scale to maintain geometric compatibility. Non-local

fluidity is active over a region of order ten times the grain size and decreasing with the square

root of shear stress, known as the cooperativity scale (Kamrin & Koval, 2012; Katz et al.,

2024). Non-local fluidity could regularise band growth, creating a minimum length scale over

which viscosity can vary, limiting the occurrence of high-frequency bands. This narrows the

space in which melt can gather to be between the compaction length, as discussed earlier in

this section, and the cooperativity scale, providing a control on band spacing.
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Figure 4: Wavelength of porosity bands in experiments plotted against
√
dδ. The dashed line

is a linear fit that respects the uncertainties in the data, suggesting a possible relationship
between the cooperativity scale, non-local fluidity, and band wavelength. Taken from Katz
et al. (2024).

Analytical solutions incorporating dilatancy and non-local fluidity provide good agree-

ment with experimental studies regarding melt band angles and radial segregation (Katz et

al., 2024). A linear relationship is proposed between the band wavelength, the sum of mean

band spacing and mean band width, and
√
dδ, where δ is the compaction length and d is the

mean grain size, which affects the cooperativity scale. This relationship is based on data with

substantial uncertainties (Figure 4). Furthermore, grain size affects many aspects of mantle

rheology, such as the diffusion length scale and capillary forces mentioned in the previous

studies. Therefore, it is very difficult to pin band width and separation down to be purely

an effect of non-local fluidity.

This study aims to test the theory laid out by Katz et al. (2024) and analyse the role of

dilatancy in creating melt-rich bands.

12



1.3 Introduction to Dedalus

Dedalus is an open-source framework for solving partial differential equations (PDEs) us-

ing spectral methods (SMs) implemented via a Python package (Burns et al. 2020). SMs

discretise variables as a finite set of basis functions, such as Fourier modes and Chebyshev

polynomials (Figure 5), and solves for their coefficients in the frequency domain. This differs

from what I will refer to as the ‘finite’ methods – finite element, finite volume, and finite

difference – that discretise PDEs in space, producing a mesh of points and cells, where alge-

braic relationships are derived between neighboring elements to solve the PDEs. While it is

possible to solve SMs in complicated geometries (Hester et al., 2021), as basis functions are

set for entire coordinate directions, complexity is greatly increased. Thus, by discretising in

space, ‘finite’ methods are much better suited for these purposes.

Figure 5: Example collocation grids for Fourier (blue) and Chebyshev (orange) bases in
Dedalus. The Chebyshev grid clusters near the boundaries of the finite domain, while the
Fourier grid is uniformly spaced and assumes periodicity (Burns et al., 2020).

The polynomials in SMs yield smooth global solutions. They are always self-consistent

and cannot develop discontinuities. Furthermore, they provide exponential convergence for

solutions with increasing number of modes in contrast to the polynomial convergence of ‘finite’

methods meaning that a greater level of accuracy can be reached with less computational

power (Canuto et al., 2006). Dedalus’ inbuilt methods also ensure the creation of sparse

matrices for solving problems, making it particularly suitable for parallelisation and use on

high-performance computing clusters (Burns et al., 2020).

SMs in Dedalus are implemented via the ‘tau-method’. Additional ‘tau’ terms are added

to the problem formulations, equivalent to the number of boundary conditions. These add

extra degrees of freedom allowing the equations to be solved over polynomials exactly (Burns

et al., 2020).
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2 Methods
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Figure 6: Simplified diagram of the problem geometry. The top and bottom surfaces are
shearing. Bands (blue shading) form at angle θ from the shearing planes. The geometry
is periodic in x. The height of the domain is H and the velocities at the boundaries are
(±U0/2, 0).

Modelling PMR as interacting discrete grains and liquid networks is computationally expen-

sive. It requires very fine meshes to resolve the small melt pockets and films dispersed in

the solid matrix. Taking a representative volume element (RVE) and modelling on a contin-

uum scale is much more efficient (Katz, 2022). The dynamics of the creeping aggregate at

this scale are akin to a viscous fluid with porosity-dependent rheological laws to account for

the presence of melt. Thus, motion can be described by coupling the Stokes equations for

the conservation of bulk momentum (1) and mass (2) in viscous flows with Darcy’s law (3),

governing fluid transport through a porous medium:

∇ · σ̄ = 0, (1)

∂ρ̄

∂t
+∇ · ρ̄v̄ = 0, (2)

q = −ks

µl
∇P l, (3)

where σ̄ is the bulk stress tensor, ρ̄ = ϕρl + (1 − ϕ)ρs is the phase-averaged density, v̄ =

ϕvl+(1−ϕ)vs is the phase-averaged velocity, q is the segregation flux, ks is the permeability

of the solid matrix, µl is the dynamic viscosity of the fluid, P l is the fluid pressure, and ϕ is
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the porosity. The segregation flux is volume of melt moving relative to the solid matrix and

can be defined as q ≡ ϕ(vl − vs). Thus, Darcy’s law can be expressed as:

ϕ(vl − vs) +
ks

µl
∇P l = 0. (4)

The conservation of momentum states that the internal stresses that govern the flow are in

equilibrium. The conservation of mass means that the mass can only change if there is a

flux of mass in or out of a region. Darcy’s law defines that the rate of fluid flow through a

porous medium is a function of how easily the rock permits liquid transport, the fluidity of

the liquid phase, and the pressure gradient driving the motion. It represents a momentum

balance for the liquid phase relative to the solid matrix. The derivations of the coupled

equations governing two-phase flows are taken from Katz (2022) unless otherwise stated.

2.1 Compaction Equation

The two-phase mass continuity equation is derived from the conservation of bulk mass (equa-

tion (2)). As the gravitational body forces are much weaker than the shear tractions generated

by the moving plates, the Boussinesq approximation is invoked. It is assumed there is zero

mass transfer between the phases, they are independently incompressible and have the same

densities. The resulting equation states that the volume of material entering and leaving a

region is balanced:

∇ · v̄ = 0. (5)

Substituting equation (5) into the divergence of the liquid momentum balance (equation (4))

eliminates the liquid velocity and yields the following relationship:

−C +∇ ·
(
Mϕ∇P l

)
= 0, (6)
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where C = ∇ · vs is the compaction rate of the solid grains and Mϕ ≡ ks

µl is them mobility

of the liquid phase. The equation links compaction, porosity and fluid flow stating that the

divergence of the Darcy flux can drive compaction of the solid grains and vice versa.

2.2 Two-Phase Stokes Equation

In a two-phase system, the fluid pressure acts equally outwards in all directions. Therefore,

it does not cause deformation. The bulk effective stress tensor σ̄eff describes the deformation

inducing stress by removing the fluid pressure component from the bulk stress. As pressure

and stress follow opposite sign conventions, the subtraction of the pressure component is

achieved by its addition to the bulk stress:

σ̄eff = σ̄ + P lI, (7)

where I is the identity matrix imposing equal fluid pressure in all directions. The bulk

effective stress can also be expressed in terms of the isotropic strain and deviatoric strain

rates:

σ̄eff = ζϕCI + 2ηϕε̇, (8)

where ζϕ is the compaction viscosity , ηϕ is the shear viscosity and ε̇ is the deviatoric strain

rate tensor:

ε̇ =
1

2

[
∇vs + (∇vs)T − 2

3
CI

]
. (9)

The isotropic part (ζϕCI) represents the resistance of the aggregate to compaction, during

which the solid matrix contracts, reducing pore space and expelling fluids. As in equation

7, I enforces equal compaction in all directions. The deviatoric part (2ηϕε̇) describes the

aggregate’s resistance to shear, a full derivation of which can be found in Katz (2022).
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By substituting equation (7) into equation (8), and subsequently into the conservation of

momentum (equation (1)), the two-phase Stokes equation is derived:

−∇P l +∇ · 2ηϕε̇+∇ζϕC = 0, (10)

dictating that pressure gradients are balanced by viscous stresses, thus describing the flow

of a two-phase viscous fluid.

2.2.1 The Dilatancy Term

Dilatancy is added via an additional term that quantifies the normal stresses generated by

grain–grain interactions (Katz et al., 2024), modifying the effective stress tensor to:

σ̄eff = ζϕCI + 2ηϕε̇−DϕΛε̇II , (11)

where Dϕ is the dilational viscosity that describes resistance to dilational deformation, ε̇II

is the second invariant of the deviatoric strain rate tensor (ε̇II ≡
√

ε̇ : ε̇/2) that records the

magnitude of the distortional deformation rate, and Λ is the particle stress anisotropy tensor:

Λ =

Λ|| 0

0 Λ⊥

 . (12)

Λ describes the normal stresses generated by a particle-laden flow. Λ|| are normal stresses

in the direction of flow. As the coordinate system is aligned with the simple shear, Λ|| is

taken to be 1. Λ⊥ is the stress in the direction normal to the shear plane. By multiplying

the magnitude of the deformation rate with a directional anisotropy tensor and a dilatancy

viscosity, the intensity and orientation of dilatant effects can be quantified on the stress. This
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modifies the two-phase Stokes equation to:

−∇P l +∇ · 2ηϕε̇+∇ζϕC −∇ ·DϕΛε̇II = 0. (13)

2.3 Porosity Evolution Equation

A modified conservation of mass equation is used to monitor the evolution of porosity, as it

tracks how much material is moving in and out of a region over time. Equation (2) is split

to show the evolution of the solid and liquid phases separately:

∂ϕρl

∂t
+∇ · ϕρlvl = 0, (14)

∂(1− ϕ)ρs

∂t
+∇ · (1− ϕ)ρsvs = 0. (15)

Since all velocities in the final equations are expressed in terms of the solid phase, porosity

evolution is calculated using equation (15). As in the compaction equation derivation, the

Boussinesq approximation is made, it is assumed that there is zero mass transfer between

the phases, they are independently incompressible, and have the same densities, resulting in

the following equation:

∂ϕ

∂t
+ vs ·∇ϕ− (1− ϕ)C = 0, (16)

describing how the porosity changes over time due to advection and compaction.

2.4 Boundary conditions

−C +∇ ·Mϕ∇P l = 0 (17)

−∇P l +∇ · 2ηϕε̇+∇ζϕC −∇ ·DϕΛε̇II = 0 (18)

∂ϕ

∂t
+ vs ·∇ϕ− (1− ϕ)C = 0 (19)
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Equations (17), (18) and (19) are solved in the geometry shown in Figure 6. No-slip and

no-penetration boundary conditions are enforced on the top and bottom surfaces which are

shearing at velocities (±U0/2, 0).

The vertical component of Darcy’s Law is:

[
ϕ(vl − vs) = −Mϕ∇P l

]
· ŷ. (20)

The velocity boundary conditions reduce the LHS to 0. Consequently, as ks and µl are

non-zero constants, Mϕ is also non-zero. Therefore, ∇P · ŷ must be 0 at the boundaries.

2.5 Constitutive laws

To impose the two-phase rheology, porosity-dependent constitutive laws are used that are

primarily derived from laboratory experiments conducted under diffusion creep dominated

conditions:

ηϕ = η0e
−λ(ϕ−ϕ0), ζϕ =

5

3
ηϕ, Mϕ = M0

(
ϕ

ϕ0

)n

, Dϕ = D0ηϕ.

The first relationship was obtained experimentally and indicates that the shear viscosity

decays exponentially with an increasing total porosity. λ is a dimensionless constant that

controls how much the porosity affects the shear viscosity. It is determined to be ∼27 for

diffusion creep regimes (Mei et al., 2002). Takei and Holtzman (2009) determined the com-

paction viscosity to be ∼5/3 greater than the shear viscosity experimentally. M0 is a reference

mobility value and n is the permeability exponent taken to be 3 for PMR (McKenzie, 1984;

Riley & Kohlstedt, 1991; Katz, 2022). The latter is an experimentally determined con-

stant controlling how the permeability changes with porosity. D0 is the dilatancy prefactor.

The requirement that entropy production remains positive for any combination of shear and

isotropic deformation restricts D0 to 0 ≤ D0 < 4
√

5/3 (Katz et al., 2024). The diltancy

viscosity relationship has not been experimentally determined for PMR. This constitutive
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law is an estimation based on observations of particle suspensions by Deboeuf et al. (2009)

that show exponential weakening of particle normal stresses with liquid fraction.

2.6 Nondimensionalisation and Perturbations

Equations (17), (18) and (19) are subsequently nondimensionalised using the following sub-

stitutions:

[vs] = U0 → vs = U0v
′,

[P l] = P0 → P l = P0P
′,

[C] = U0

H
→ C =

U0

H
C ′,

[∇] =
1

H
→ ∇ =

1

H
∇′,

where primes indicate nondimensional values. P0 = η0U0/H, U0 is the velocity of the imposed

shear, H is the height of the domain, and η0 is a reference shear viscosity. Parameters are

scaled to these values. The primes have been omitted from this point onwards as all terms

in the governing equations are nondimensional. Additionally, the superscripts have also been

dropped: from here on, v will exclusively denote the solid velocity, and P will exclusively

denote the liquid pressure.

The porosity is decomposed into a background porosity and perturbation porosity, ϕ =

ϕ0+ϕ1, where ϕ0 is set to 5%. The velocity is decomposed into a background velocity, imposed

by the shearing plates, and a perturbation caused by the presence of melt, v = v0 + v1. As

the imposed shear is linear, v0 = (y, 0) = yx̂, resulting in the following final equations to be
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solved in Dedalus:

−C +R1∇ ·
(
1 +

ϕ1

ϕ0

)n

∇P = 0, (21)

∇P +∇ · e−λϕ1 [J2 +∇v1 + (∇v1)
T − 2

3
CI] +∇R2C −∇ ·DϕΛε̇II = 0, (22)

∂ϕ1

∂t
+ (zx̂+ v1) ·∇ϕ1 − (1− ϕ1 − ϕ0)C = 0, (23)

where,

R1 =
M0η0
H2

=
δ2

H2
, R2 =

ζϕ
ηϕ

=
5

3
, J2 =

0 1

1 0

 .

J2 is derived from the gradient and gradient transpose of the background velocity in the

deviatoric strain rate tensor.

2.7 Implementing in Dedalus

The equations were solved in two main configurations: using instantaneous solvers with

imposed porosity fields, and a strain-evolution model in which porosity was allowed to evolve

dynamically. All models use Fourier basis functions were used along the x-axis to ensure

periodicity and Chebyshev polynomials along the z-axis to enforce the boundary conditions.

2.7.1 Comparison to Linearised Stability Analysis

A linearised stability analysis is an established analytical solution that determines whether

perturbations grow or decay. Results of the numerical model solutions are validated by

comparing them to the analytical solution outlined in Katz et al. (2024). This solution

obtained by deriving an equation for the irrotational and solenoidal component of the velocity

field. The former is attained by eliminating the liquid pressure gradient in the compaction

equation (17) using two-phase Stokes equation (18). Taking the curl of the two-phase Stokes

equation (18), results in an equation governing the solenoidal velocity field. This eliminates
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the liquid pressure from the equations so that there is only one unknown: the solid velocity.

These are coupled with the porosity evolution equation (19). Imposing a uniform background

porosity field, the reference state, with an infinitesimally small sinusoidal perturbation, allows

variables to be expanded to the first order, linearising the coupled equations. In the reference

state the velocity gradient is equal to the strain-rate, γ̇, and the compaction rate is zero.

These solutions are used to solve the perturbation equations and calculate the growth rate,

ṡ, resulting in the following analytical solution:

ṡ = (1− ϕ0)
λγ̇

3

(δk)2

1 + (δk)2

[
sin2θ − D0

2

(sin2θ + Λ⊥cos
2θ)sin22θ

1− D0

4
(1− Λ⊥)sin4θ

]
, (24)

where k is the wavenumber of the sinusoidal porosity perturbation. This solution is nondi-

mensinalised using the following relationships:

[ṡ] =
U0

H
→ ṡ =

U0

H
ṡ′,

[γ̇] =
U0

H
→ γ̇ =

U0

H
γ̇′,

[δ] = H → δ =
δ′

H
,

where primes indicate nondimensional values. These modifications result in the following

benchmark:

ṡ′ = (1− ϕ0)
λγ̇′

3

k2

1
R′

1
+ k2

[
sin2θ − D0

2

(sin2θ + Λ⊥cos
2θ)sin22θ

1− D0

4
(1− Λ⊥)sin4θ

]
, (25)

where R′
1 = (δ′/H)2.

For the numerical model, a perturbation porosity field is imposed:

ϕ1 = Acos(kxx+ kzz), (26)

where A is the amplitude of the porosity (A = 0.0001), kx = |K|sinθ, kz = |K|cosθ, and |K| is
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the magnitude of the wave-vector of the imposed field which is equivalent to the wavenumber

k. k is chosen to be ∼38 to ensure perturbations are significantly smaller than the compaction

length and maximum growth rate is achieved (Katz et al,. 2024). The width of the domain

is adjusted to ensure periodicity along the x-axis and that the centre of the field is always

occupied by the centre of a high porosity band. Equations (21) and (22) are solved using the

non-linear boundary value problem (NLBVP) solver in Dedalus for pressure and velocity. A

second linear boundary value problem (LBVP) solver converts the perturbation velocity into

the compaction rate. By taking the value at the centre of the field, the effect of the boundary

conditions on the compaction rate are minimised and the growth rate of the bands can be

calculated as:

ṡ′ =
C ′(1− ϕ0)

A
. (27)

The growth rate from the numerical model is calculated at 5° intervals from 0° to 180°. 180

modes are used in along the x- and z-axis (see Appendix 1 for example code).

2.7.2 Strain Evolution Model

The model iterates between an NLBVP and initial value problem (IVP) solver. A starting

random porosity field is generated using an in-built Dedalus function. The NLBVP solves

equations (21) and (22) for the pressure and perturbation velocity given a set porosity field.

The IVP solves equation (23) to calculate a new porosity field, for a timestep of 0.01 given

the outputs of velocity perturbation and pressure from the NLBVP. The new porosity field

is subsequently fed into the first set of equations. This process is continued until a target

strain of 3.1 is reached. 56 modes are used in along the x- and z-axis. An example code is

included in the Appendix 2.
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2.7.3 Poiseuille Flow

This simulation is implemented identically to the strain strain-evolution model, bar two

modifications to the two-phase Stokes Equation (22). Flow at the top and bottom boundaries

are set to the same velocity. This creates a linear background velocity profile, invariant in z,

eliminating the J2 term. Additionally, a pressure forcing of magnitude h in the x direction

is introduced:

∇P +∇ · e−λϕ1 [∇v1 + (∇v1)
T − 2

3
CI] +∇R2C −∇ ·DϕΛε̇II = −hx̂ (28)
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3 Results

3.1 Growth Rate Spectra and Linear Stability Analysis

Figure 7: Comparison of the numerical model perturbation growth rates against the analytical
solutions for angles 0-180°. Λ⊥ is held at 1 and k ∼ 38. (a) D0 = 0, (b) D0 = 1, (c) D0 = 2,
(d) D0 = 3.
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Figure 8: Comparison of the numerical model perturbation growth rates against the analytical
solutions for angles 0-180°. D0 is held at 2 and k ∼ 38. (a) Λ⊥ = 0.8, (b) Λ⊥ = 1.0, (c)
Λ⊥ = 1.2.

The numerical models show some agreement with the benchmarks (Figures 7 & 8). They

accurately reproduce the shape of the benchmark growth spectra but fail to match the am-

plitude when the dilational stresses are introduced to the two-phase Stokes equation.

ForD0 = 0, there is no dilatancy. Band angles grow from 0-90° and decay between 90° and

180°. Peak growth rate is at 45° degrees. The growth rate curve is symmetric in amplitude,

and bands emerge as quickly as they are destroyed.

The incorporation of the dilatancy term suppresses the growth rate peak and amplifies

the negative growth rate. Therefore, low-angle bands develop slower, and high-angle bands

are destroyed faster. At D0 = 1, the growth rate has a broad peak. Thus, bands will initially
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grow at a broader range of angles than in the case without dilatancy. When D0 ≥ 2 there

are two peak growth rates. For D0 = 2 these are at ∼ 15− 20° and ∼ 70− 75°. For D0 = 3

the maxima are at ∼ 10−15° and ∼ 75−80°. Due to the shear, bands are constantly rotated

and those forming at higher angles will be rotated into the negative growth rate field. As a

result, bands at lower angles are preferentially preserved.

The effects of the particle stress anisotropy tensor are much more muted than that of

D0. If Λ⊥ < 1 band growth is slightly accelerated growth and destruction is slowed relative

to Λ⊥ = 1 . If Λ⊥ > 1, band growth is slightly suppressed and destruction is accelerated

relative to Λ⊥ = 1. Increasing Λ⊥ encourages bands to grow at slightly more extreme angles.

However, these variations are practically insignificant compared to those induced by D0.
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Figure 9: Diagram showing how dilatancy causes the double-peaked growth rate spectra.
(a), the red line shows the growth rate of melt-rich bands when dilatant stresses are excluded
from the two-phase Stokes equations. The cyan line represents the effect of increasing melt-
fraction pushing grains apart, reducing their ability to interact and dilate. (b) shows the
resultant curve from combining these two effects, modifying the shape of the original growth
rate spectrum. (c) depicts the curve from (b) and the band angle dependent strength of
dilatancy causing shear localisation, which is strongest at band orientations of 0° and 90°
from the shear plane. (d) presents the overall growth rate spectrum resulting from all these
interactions, with a low-angle peak growth rate, matching experiments.

The unique shape of the dilatancy growth spectra is the manifestation of two competing
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mechanisms found in granular two-phase flows (Katz et al., 2024). Greater melt fractions push

grains apart and reduce the grain-grain interactions that result in dilatation. In the context

of melt segregation, the presence of any porosity would cause the growth rate to decrease

regardless of a band’s orientation relative to the shear planes. The second mechanism is

driven by porosity perturbations creating variations in the shear viscosity which consequently

alter the rate of shear strain. As the stresses arising from dilatancy are dependent on the

magnitude of the shear strain rate, porosity perturbations that are orientated favourably

to dilate and localise shear strain at 0° and 90° will grow. The effect of this mechanism is

proportional to cos22θ. These interactions are illustrated in Figure 9.
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3.2 Strain Evolution Models

Figure 10: Grid of frames from the strain evolution models at γ = 0.75, illustrating the
formation of bands. Rows lower down in the grid have higher D0. Columns further to the
right, have higher Λ⊥.

All models show the development of porosity bands after enough strain has been applied

(Figure 10).
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Figure 11: Frames showing porosity bands forming from a random porosity field when D0 = 2
and Λ⊥ = 1. (a) starting random porosity field (γ = 0.0). (b) shallow and subvertical melt
networks forming at the peak growth rate angles (γ = 0.30). (c) low-angle porosity bands,
similar in orientation to experimental studies (γ = 2.00).
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At the lowest strains, regions of high porosity connect to form larger networks that very

quickly develop into linear structures angled at the peak growth rates (Figure 11). These

structures often intersect whenD0 ≥ 2. All networks are simultaneously advected and rotated

by the induced shear. Bands increase in amplitude with as the strain grows and more melt

can be segregated.

Figure 12: Diagram showing the differing effects of band angles on shear localisation and
band growth. (a) low-angle bands localise shear along their structures. This slows their
advection and rotation, allowing melt to advect into them. (b) subvertical bands localise
shear orthogonal to their direction and have a large gradient in velocity across them. This
works to advect and rotate networks with the background flow and stops melt entering the
bands as they are being advected at a similar rate. Therefore, subvertical bands do not grow
greatly in amplitude.

For the models run with D0 ≥ 2, there are two peak growth rates. The lower angled

networks are strongly aligned against the direction of advection: the ends are facing the

direction of the induced flow. Therefore, shear localisation due to the porosity weakening

rheology acts to slow band advection. This process increases band amplitude and width.

Their slow movement means that porosity perturbations can easily be advected into the

ends of the bands to increase the band’s amplitude (Figure 12). Higher angled networks sit

almost perpendicular to the dominant flow. This maximises the vertical velocity gradient

across them. Furthermore, the direction of maximum shear localisation is orthogonal to

their sub-vertical structure. These factors work to advect and rotate them at a fast rate

so laterally adjacent material cannot enter the bands easily. As a result, they do not grow

greatly in amplitude. With increasing strains, they are rotated to angles over 90° into the

negative growth field and the structures are subsequently destroyed resulting in low-angle
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bands dominating the field.
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Figure 13: Frames of porosity band maintenance taken at strain intervals of γ = 0.15,
beginning at γ = 1.30 and ending at γ = 2.35. Arrows indicate the bands of interest. The
pale red line marks the original band as it rotates out of a favorable orientation, while the
pale white line highlights a new band rotating into a more favorable position for growth.
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At intermediate and higher strains, all preserved bands can be rotated enough to be at

unfavorable angles and experience a negative growth rate. This often occurs in the middle of

the field where the shear induced background velocity changes direction. The angle at which

band destruction occurs is determined by when the growth rate crosses the x-axis into the

negative field (see Figures 7 and 8). For models where D0 ≤ 1, D0 = 2 and D0 = 3, this

occurs at threshold of 90°, 45/90° and ∼23° degrees, respectively. The bands split in two

at their highest angle point, the threshold, and then connect with the following band being

advected into its path. Between the disconnection of the old band and connection of the new

band, a slightly melt enriched area develops at a shallow angle between the two band ends

that will join. The shallow angle allows the porosity perturbation to grow in magnitude,

acting as a ‘glue’ where shear can localise. It will eventually connect the bands once they

have been advected far enough to be well aligned.
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Figure 14: Spectral dataset showing how dominant band angles evolve with strain when
D0 = 2 and Λ⊥ = 1. The white dotted lines are the passive advection trajectories of bands
from simple shear, taken from Katz (2022). The white markers are band angles calculated
from PMR simple shear experiments. The squares are from Holtzman et al. (2003) and the
rhombi are from Holtzman et al. (2007)

These processes can also be observed in the spectral dataset (Figure 14) that shows the

dominant band angles with increasing strain. At the start of the simulations, the porosity

is random and the only clearly dominant angles are at 0°, 45° and 90°, which I interpret

to be a result of the grid data used to calculate the band angles. With increasing strain,

angles at the peaks of the growth rate spectrum become more dominant. However, the

higher peaks seem to follow the passive advection pathway until they are destroyed. The

low-angle peaks dominate at greater strains. The advection of the low-angle bands is also

clear. Several branches diverge off the main band angle pathway (or trunk). These seem

to follow the passive advection trajectory of low-angle bands. These branches seem to be
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truncated at the threshold value for the model parameters (see Appendix 3 for more spectra).

The experimental studies match the parameters D0 = 2 and Λ⊥ ≈ 0.8− 1 the most closely.

Models become unstable when strong gradients in porosity and shear viscosity develop.

This occurs earlier with lower D0.

3.3 2D Poiseuille Flow

Figure 15: Compaction rate due to Poiseuille flow across a vertical melt band.
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Figure 16: Plot showing the porosity being redistributed to the margins with increasing
timesteps. As the overall flow is negative, the plot also shows the fastest velocities to be in
the core of of the model. It is accelerating.

The models show that the compaction rate is greatest along the central axis (Figure 15), where

flow velocity is the fastest, and negative at the boundaries. Thus, porosity is redistributed

from areas of higher flow to slower regions: adjacent to the no-slip surfaces (Figure 16). Over

time, this creates a layered structure where porosity peaks at the boundaries and is invariant

in x, parallel to flow. Models with varying strengths of forcings (h = 1, 0.1, 0.01, 0.001)

produced similar results, albeit at different rates and with varying degrees of curvatures in

velocity profiles.
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Figure 17: Plots showing the porosity being redistributed to the margins and favourably
angled bands being preserved.

Increasing the amplitude of the porosity perturbation and the strength of the forcing pro-
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duced a pattern with the slightest resemblance of melt bands forming (Figure 17). Favourable

orientations are preserved and unfavourable orientations are slowly diminished. There is no

large scale restructuring of the porosity pattern and the perturbations are primarily advected

with the flow. Additional frames varying the strength of forcing and amplitude of the porosity

perturbation can be found in Appendix 4.
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4 Discussion

4.1 Comparisons With Experiments and Other Models

The lack of coherence in the growth rate amplitudes from the linear stability analysis may

indicate that the numerical model may add additional physics that is not present in the ana-

lytical solution. One such example is the effects of the no-slip and no-penetration boundary

conditions which are not included in the benchmark. They provide a hard surface that limits

the flow direction, thus amplifying compaction and decompaction at the boundaries. By

taking values from the centre of the field, the effect of these boundaries is minimised but may

not be fully diminished. Another factor for the discrepancy could be the size of the porosity

perturbation. The analytical solution assumes an infinitesimally small porosity perturbation.

The perturbations used in the numerical model are greater and more representative of the

samples used in experiments. However, this could result in greater shear localisation and

solid decompaction, increasing the growth rate of melt bands.

The results show that when D0 ≈ 2 and Λ⊥ ≈ 0.8 − 1, band angles most similar to

those observed in experiments are formed. This is mostly in alignment with the analytical

solutions set out in Katz et al. (2024), which states that the solution using D0 = 2 and

Λ⊥ = 1 produces growth rates that most closely resemble experiments. The effects of Λ⊥

are very weak and insignificant in comparison to the D0. Therefore, this slight discrepancy

between the analytical and numerical solutions does not substantially affect the system, and

the lack of consensus on constraining its value from experiments (Guazelli & Pouliquen, 2018)

does not prohibit the accurate modelling of PMR if D0 is known.

A major assumption of the model is that the dilatant viscosity used is true to the rhe-

ology of PMR. The relationship Dϕ = D0ηϕ is an estimate derived from particle suspension

experiments (Debouf et al., 2009) as there have been no direct measurements of the dilation

viscosity in PMR. While suspensions can sometimes behave in a way somewhat analogous to

PMR, they are not fully representative of mantle rheology. Therefore, the assumption that
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dilatant viscosity is a simple multiple of the shear viscosity may be inaccurate. Furthermore,

the tested range of D0 values were narrowed down mathematically. While the resulting range

of values could all be physically possible, it does not preclude the fact that the actual range

in nature may be much narrower. The observation that a D0 = 2 for PMR can recreate the

low angle bands seen in experiments does not make it a universal rule for mantle rheology.

Rather, it states that if the mantle has D0 ≈ 2 then dilatancy could be a dominating force

in band formation. If experimental studies determine that D0 ≈ 2, the role of dilatancy in

governing PMR rheology must be reconsidered.

The strength of dilatancy is unknown in the mantle. Therefore, it is worthwhile to

question what is the minimum strength of dilatancy needed to influence melt segregation.

Regions of small grain size could amplify the effect of dilatancy as they reduce the shear

viscosity of PMR and localise deformation. This leads to a feedback loop where shear strain

localisation further reduces grain size and weakens the region. If dilatancy is a factor of

the shear viscosity, then it could accelerate the softening of the PMR by encouraging melt

to flow into the area. With regards to previous models of melt segregation, dilatancy does

not necessarily invalidate the two-phase damage theory developed by Rudge and Bercovici

(2015). As mentioned earlier, by localising strain, it can increase the flow of grains to

encourage damage and increased grain pinning, limiting grain size growth. However, these

are likely to be secondary to the effect of the dilatancy, which can independently segregate

melt, as shown in the models.

The dilatant strain evolution models do a poor job of replicating the characteristic band

widths and spacings recorded in experiments, giving a strong indication that these might

be controlled by other rheological constraints. Bands grow in width and separation with

increasing strain. Their separation remains shorter than the compaction length (δ = 1/4,

in these models) at γ = 2. Their widths are almost equal in size to their separations,

in stark contrast to the narrow bands observed by Holtzman et al. (2003) that were an

order of magnitude narrower than the melt-poor regions. This could be because there is no
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mechanism in the model to discourage short-wavelength perturbations. Granular dilatancy

can act in unison with all the theories proposed to provide a lower limit for band separation:

capillary effects on a diffuse interface (Bercovici & Rudge, 2016); surface tension-driven

dissolution/precipitation (Takei & Hier-Hajumder, 2009; King et al., 2011); and non-local

fluidity (Katz et al., 2024). Therefore, no clear conclusions can be drawn as to whether one

dominates. Incorporating them into strain-evolving dilatant numerical models could help to

distinguish between more reasonable hypotheses.

4.2 Bands and Melt extraction in the Mantle

The primary motivation for studying melt segregation is to understand how melt is concen-

trated and extracted at spreading centres. Seismic anisotropy beneath divergent plate mar-

gins, concentrated beneath surface expressions of magmatism, is strong evidence for sheets

of melt extending for hundreds of kilometres parallel to the Ethiopian Rift (Kendall et al.,

2005) and Reykjanes Peninsula (Pilidou et al., 2005). Vertical dunite sheets have also been

studied in the Oman Ophiolite (Braun & Kelemen, 2002) and Trinity Peridotites, Northern

California (Quick, 1982). These sheets are believed to form where the strain rates are high-

est: vertically near the center of rifting and at an angle where the lithosphere-asthenosphere

boundary (LAB) is inclined (Rees Jones et al., 2021). Modelling has suggested that vertical

melt segregation is strongly assisted by buoyancy driven reactive melt flows that dissolve the

host rock, resulting in vertical networks dominating transport in the centre of the ridge at

shallow depths (Rees Jones et al., 2021). Angled sheets due to shear are predicted to occur

at greater depths, nearer to the LAB margins. In these regions, sheets are influenced by

the passive flow of the mantle as well as the vertical gradient in shear induced by plates,

leading to the emergence of networks dipping more steeply from horizontal than laboratory

experiments (Katz et al., 2006). These are far harder to uplift and preserve so there is less

concrete evidence for them. It is likely that melt bands influenced by dilatancy could be

important for focussing melt at depth, creating lenses on the order of hundreds of metres in
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length (Holtzman et al., 2003), and not play an important role for shallow processes.

4.3 Bands and Magmatic intrusions

Magmatic intrusions, such as dykes and sills, are driven by pressure gradients. As material

is caught in the rough surface of the rock margins, flow is inhibited relative to the intrusion

core and shear is induced. If the rheology of PMR in intrusions is similar to that of the

experiments reviewed in the introduction simulating mantle conditions, it is reasonable to

hypothesise that dilatancy may contribute to the formation of melt-rich bands in intrusions,

such as those examined by Nicholas (1986) and discussed in the introduction.

The Poiseuille flow example acts as a simplified analogue, recreating some of the the

conditions of an in intruding flow, but neglecting the effects of cooling from colder country

rock margins. Given these assumptions and simplifications, the model is not universally

applicable. It is only valid under specific conditions where the rate of cooling is much slower

than the rate of intrusion, and where the melt fraction of the PMR is low enough to allow

strong grain-grain interactions and the applicability of mantle-like rheological laws. Thus,

the model is most likely to be representative of dykes and sills near the base of the crust,

where the rock’s chemistry, pressure, and temperature more closely resemble those used in

experimental studies, and where temperature contrasts at the margins may be more subtle.

For models using a small porosity perturbation, the primary observation of decompaction

at the margins is the effect of dilatancy. As shear is greater near the no-slip boundaries, the

magnitude of the distortional deformation rate, (recorded by ε̇II) also increases, amplifying

the effect of dilatancy. This increases the melt fraction at the edges and pushes the solids

towards the centre of the flow where the vertical velocity gradient is more shallow and the

effects of dilatancy are muted. Similar behaviour was theorised by Bagnold (1954) for neu-

trally buoyant particles suspended in a Newtonian fluid. Related concepts have also been

applied to the crystallisation of ultramafic intrusions (Bhattacharji & Smith, 1964; Simkin,

1967). However, these studies did not explicitly relate such phenomena to dilatancy in dense,
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granular flows.

This melt segregation could theoretically lead to the enrichment of incompatible elements,

that preferentially partition into the liquid phase, nearer to the intrusion margins in addition

to a slightly more evolved mineral composition. Geochemical studies of deeply intruded

dykes and sills have yielded results that align with this hypothesis (Brouxel, 1991; Tarney &

Weaver, 1987; Nkono et al., 2006; Latypov, 2003)(see Appendix 5 for example geochemcial

data). However, shallowly intruded dykes do not show such behaviour (Namur & Humphrys,

2018; Mollo et al., 2011; Ross, 1986). This may be due to the steeper temperature gradients

experienced by shallow and volcanic intrusions compared to deep crustal dykes and sills,

which can cause the margins to crystallise before the melt has a chance to fully segregate to

them. Therefore, intrusion transect chemistry is determined by a balance between inertial

forces and cooling rate. As a result, intrusion depth is likely to be the primary controlling

factor in melt distribution. However, local variables that may affect PMR velocity could

create anomalies where fast moving shallow intrusions segregate melt to the margins or a

very slow moving intrusion at depth cools before melt segregation.

The lack of porosity band emergence could be the result of the low strain-rates which

favour the migration of melts towards the margins in the model over band creation. This is

because it is not reliant on connecting and amplifying small porosity perturbations into larger

bands. Furthermore, increasing the melt fractions at the margins reduces the strength of the

PMR. Therefore, flow can accelerate, amplifying the efficiency of melt segregation away from

the core and destroying porosity perturbations that create bands.

Increasing the size of the porosity perturbation relative to the background porosity results

in greater gradients in shear viscosity in the random porosity field. This weakens the PMR,

encourages strain localisation and melt band formation. However, as discussed in the results

section, this system does not create straight low angled bands as the simple shear model. It

preserves bands at favorable angles while slightly diminishing those at unfavorable ones.

The relatively narrow window of conditions required to form distinct melt bands in mag-
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matic intrusions is likely to limit their occurrence in nature. However, several intrusions at

mid- and low-crustal levels contain low-angle lenses enriched in minerals crystallised from

more differentiated melts (Floess et al., 2019; Zavela et al., 2011, Nicolas, 1986; Nicolas

and Jackson, 1982; MacLeod & Yaouancq, 2000; Puffer & Horter, 1993). The results of

this study are not comprehensive enough to provide an in depth reasoning for why these

show melt lenses. However, it could be suggested that their sources may have undergone

heterogeneous melting causing large variations in the porosity and shear viscosity.

4.4 Suitability of Dedalus for Geodynamics

As Dedalus is not restricted by spatial discretisations, it can produce very accurate results us-

ing significantly fewer modes/elements than ’finite’ methods require. This drastically reduces

the computational cost of running models. While a greater number of modes could have been

used for the strain evolution models, the increase in accuracy would have been exponentially

less distinguishable and required much greater computational power. Furthermore, it is rea-

sonably good at handling non-linear equations if they include enough linear terms to balance

the non-linear terms. However, it is very difficult to quantify how non-linear equations could

be and keep the problems well conditioned. Dedalus cannot solve fully non-linear equations.

The research highlighted that Dedalus has trouble dealing with sharp spatial contrasts

in viscosity. This could be because it creates a quasi-discontinuity in the material properties

that are hard to resolve with global basis functions. The issue arose often when using the

random field generator for the porosity. When using more modes, the gradients in porosity

became greater, creating sharp viscosity contrasts. This could be overcome by smoothing

the initial random porosity field. However, this comes at a cost of not being able to resolve

smaller melt bands.

With these considerations in mind, Dedalus could be a very powerful tool for solving

non-linear equations that govern flow in the outer core, as the solutions are guaranteed to be

smooth and sharp contrasts in material properties will not occur.
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5 Conclusion

The analytical solutions of the two-phase flow equations incorporating dilatancy and non-

local fluidity in Katz et al. (2024) have provided the most comprehensive analytical reasoning

for melt segregation as of yet in both planar, and toroidal shear. By creating a strain evolving

models, this study has tested whether the analytical model can reproduce the observations

seen in experiments and magmatic intrusions. It was found that the dimensionless values

of D0 ≈ 2 and Λ⊥ ≈ 0.8 − 1 could reproduce the ∼15-20° band angles seen in experiments,

even with the exclusion the non-local fluidity parameter. These values are consistent with

our current understanding of PMR rheology. However, the signature narrow melt bands, and

wide melt-poor regions could not be recreated by dilatancy alone.

The dilatant two-phase flow equations were also implemented to recreate the dynamics

of igneous intrusions. The Poiseuille flow example, aimed to be analogous to a dyke or sill

intruding at a rate far greater than it’s cooling showed that melt can be concentrated near

the margins. This aligned with geochemical studies of deeply intruded dykes.

These findings show that while the inclusion of dilatancy has improved our understanding

of melt band formation, there are still many questions needing to be answered, especially

regarding band width and separation. Furthermore, to understand how such phenomena can

create more efficient pathways for melt extraction at mid-ocean ridges, it is essential that we

gain a greater insight into grain size growth and decay in PMR as these can greatly impact

the controlling factors of band formation.

Dedalus is a powerful tool for geodynamics in simple geometries. While one of its greatest

strengths is self-consistency from smooth-global functions, it should be noted that it cannot

resolve sharp boundaries limiting its use for studying phenomena such as dyke propagation

into rock. Furthermore, its inability to solve for sharp viscosity contrasts further stably limits

its applicability for some geodynamics questions.
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8 Appendices

8.1 Example Code for Linear Stability Analysis

"""

Code to benchmark shearing of two-phase dilatant partially molten rock.

"""

import numpy as np

import h5py

import dedalus.public as d3

import matplotlib.pyplot as plt

eta0 = 1 # Reference shear viscosity

Lam = 27 # Porosity dependent shear viscosity exponent

bgpor = 0.05 # Background porosity

n = 3 # Permeability Exponent

A = 0.0001 # Amplitude of perturbation

H = 1 # Reference height of domain

compleng = H/4 # Compaction length

D0 = 2 # Dilatancy Prefactor

lamper = 0.8 #Perpendicular Particle Stress Anisotropy

j = 6 # Variable to set wavenumber (note that j is not the wavenumber )

num = 2 # Sets number of bands in field, 2 ensure centre is always porosity maximum

noang = 37 # Number of times growth rate is calculated between 0 and 180 degrees

angleangle = np.zeros(noang) # Array for plotting angle

s_calc = np.zeros(noang) # Array for plotting growth rate
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c_cent = np.zeros(noang) # Array for Divergence at central point (middle of a band)

for i in range(0, noang):

#Make wave-vector to create porosity field

angledeg = 5*i

# Calculate growth rate for angles at every 5 degrees between 0 and 180

angle = (angledeg)*(np.pi/180) # Convert angle to radians

l = H / j #

kmag = (2*np.pi) / l # Calculate the magnitude of wave-vector

kx = kmag * np.sin(angle) # Calculate x component of wave-vector

kz = kmag * np.cos(angle)# Calculate z component of wave-vector

# scale lx (domain width) to ensure periodicity

if angledeg in [0, 90, 180]:

lx = l

else:

lx = l / abs(np.sin(angle))

##### Parameters #####

Lx, Lz = num*lx, H

# Domain size, multiplying by num ensures centre of domain

is porosity band maximum
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Nx, Nz = 180, 180 # Number of modes in x and z

dealias = 3/2 # Pad modes when transforming to grid space

dtype = np.float64

##### Bases #####

coords = d3.CartesianCoordinates(’x’, ’z’)

# Setting up coordinate system

dist = d3.Distributor(coords, dtype=dtype)

# For Parallelisation, which I did not do

xbasis = d3.RealFourier(coords[’x’], size=Nx, bounds=(0, Lx), dealias=dealias)

# Create basis for calculations in x axis

zbasis = d3.ChebyshevT(coords[’z’], size=Nz, bounds=(-Lz/2 , Lz/2),

dealias=dealias) # Create basis for calculations in z axis

xbasisd = d3.RealFourier(coords[’x’], size=round(Nx*dealias), bounds=(0, Lx))

# Create basis for plotting in x axis

zbasisd = d3.ChebyshevT(coords[’z’], size=round(Nz*dealias), bounds=(-Lz/2 , Lz/2))

# Create basis for plotting in z axis

##### Fields #####

p = dist.Field(name=’p’, bases=(xbasis,zbasis)) # Pressure field

u = dist.VectorField(coords, name=’u’, bases=(xbasis,zbasis))
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# Perturbation velocity field

Inpor = dist.Field(name=’Inpor’, bases=(xbasis,zbasis))

# Constant background porosity field

por = dist.Field(name=’por’, bases=(xbasis,zbasis))

# Perturbation Porosity Field

tau_p = dist.Field(name = ’tau_p’)

# Tau term for gauge condition

tau_u1 = dist.VectorField(coords, name=’tau_u1’, bases=xbasis)

# Tau terms for velocity

tau_u2 = dist.VectorField(coords, name=’tau_u2’, bases=xbasis)

# Tau terms for velocity

tau_p1 = dist.Field(name=’tau_p1’, bases=xbasis)# Tau terms for pressure

tau_p2 = dist.Field(name=’tau_p2’, bases=xbasis)# Tau terms for pressure

c = dist.Field(name=’c’, bases=(xbasis,zbasis)) # Divergence Field

s = dist.Field(name=’s’, bases=(xbasis,zbasis)) # Growth rate field

##### Substitutions #####

x, z = dist.local_grids(xbasis, zbasis) # Create an x-z grid

ex, ez = coords.unit_vector_fields(dist) # Unit vectors

lift_basis = zbasis.derivative_basis(1)

# Creates a derivative basis to apply tau_terms

lift = lambda A: d3.Lift(A, lift_basis, -1)

# Function to multiply with mode/element for selected basis,

necessary for enforcing boundary conditions
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dx = lambda A: d3.Differentiate(A, coords[’x’]) # Partial Derivative in x

dz = lambda A: d3.Differentiate(A, coords[’z’]) # Partial Derivative in z

Inpor[’g’] = bgpor # Set background porosity field to a constant value

por[’g’] = A * np.cos(kx*x + kz*z)

# Create imposed sinusoidal perturbation porosity field from wave-vector

# Z Field (Creating a non-constant coefficient for z axis values)

y = dist.Field(bases=zbasis)

y[’g’] = z

# Identity Matrix

I = dist.TensorField(coords)

I[’g’][0,0] = 1

I[’g’][1,1] = 1

# Identity Matrix

J = dist.TensorField(coords)

J[’g’][0,1] = 1

J[’g’][1,0] = 1

# 1st Order reductions to apply tau terms

grad_u1 = d3.grad(u) - ez*lift(tau_u1)

grad_u2 = d3.TransposeComponents(d3.grad(u) - ez*lift(tau_u1))

dzP = dz(p) + lift(tau_p1)

grad_p = dx(p)*ex + dzP*ez
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# Equation Substitutions

porbrac = (1 + por/Inpor)**n

R1 = (compleng/H)**2 # R1 substitutuion

R2 = 5/3 # R2 substitutuion

C = d3.trace(grad_u1) # Divergence of velosty field

srt = (grad_u1 + grad_u2 -(2/3)*C*(I)) # Deviaoric strain rate tensor

eta = eta0 * np.exp(-Lam*(por)) # Porosity perturbation dependent shear viscosity

D_phi = D0*eta # Dilatancy prefactor

# Particle Stress Anisotropy

PSA = dist.TensorField(coords)

PSA[’g’][0,0] = 1

PSA[’g’][1,1] = lamper

srtr = (0.5 * (J + d3.grad(u) + d3.TransposeComponents(d3.grad(u))

- (2/3)*d3.div(u)*(I))) # Strain rate tensor for RHS

# Convert components to individual fields

srtr_xx = srtr@ex@ex

srtr_xy = srtr@ex@ez

srtr_yx = srtr@ez@ex

srtr_zz = srtr@ez@ez

# Calculate second invariant

I2 = np.sqrt((srtr_xx**2 + srtr_zz**2 + srtr_xy**2 + srtr_yx**2)/2)
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# Calculate dilatancy stress

Dterm = D_phi*PSA*I2

##### Solvers #####

# The code below is how the equations are inputted into the solver,

with the variables needing to be calculated stated top-most line

# LHS contains linear terms, RHS contains non-linear terms

problem1 = d3.NLBVP([p, u, tau_u1, tau_u2, tau_p1, tau_p2, tau_p], namespace=locals())

problem1.add_equation("-C + R1 * div(porbrac * grad_p) + lift(tau_p2) +

tau_p = 0") # Compaction Equation froma modified Darcy’s Law

problem1.add_equation("-grad_p + div(eta * srt) + R2*grad(C)

+ lift(tau_u2) = -div(eta*J) + div(Dterm) ") # Two phase Stokes equation

problem1.add_equation("u(z= Lz/2) = 0*ex + 0*ez")

# Perturbation velocity boundary condition

problem1.add_equation("u(z= -Lz/2) = 0*ex + 0*ez")

# Perturbation velocity boundary condition

problem1.add_equation("(grad_p@ez)(z= Lz/2) = 0")

# Pressure boundary condition

problem1.add_equation("(grad_p@ez)(z= - Lz/2) = 0")

# Pressure boundary condition

problem1.add_equation("integ(p) = 0")

# Gauge condition to create a sparse linear system on LHS

# Setting up solver to solve equations in problem1
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solver1 = problem1.build_solver(ncc_cutoff=5e-3)

solver1.newton_iteration()

# Calculate divergence from velocity field

problem2 = d3.LBVP([c], namespace=locals())

problem2.add_equation("c = div(u)")

solver2 = problem2.build_solver()

solver2.solve()

# A too convoluted way of extracting calcualting growth rate

c_center_row = dist.Field(name=’c_center_row’, bases=(xbasis,zbasis))

# Create field to extract central C values

center_row = round(Nx / 2) # Find central C value

center_col = round(Nz / 2) # Find central C value

c_center_row[’g’] = c[’g’][center_row,center_col] # Extract central c value

c_ave = d3.Average(c_center_row, (’x’,’z’)) # Make sure it is a single value

c_avex = c_ave.evaluate()[’g’]

s_calc[i] = c_avex*(1-bgpor)/A # Calculate growth rate

print(s_calc[i]) # For tracking

angleangle[i] = angledeg # Prepare to plot correct growth rate at correct angle

# Analytical model

zetain = (5/3)*eta0 # Reference compaction viscosity

nu = (zetain/eta0) + 4/3 # Augmented compaction viscosity ()= 3)
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gammadot = 1 # Strain rate

theta = np.arange(181) # Create range of values for plotting

thetarad = theta*np.pi/180 # Convert to radians

numerator = (np.sin(thetarad)**2 + lamper*np.cos(thetarad)**2)*np.sin(2*thetarad)**2

denominator = 1-(D0/4)*(1 - lamper)*np.sin(4*thetarad)

sdot1 = (1-bgpor)* ((Lam*gammadot)/3) * ((((kmag)**2))/((1/(R1)**2

+ (kmag)**2)))* (np.sin(2*thetarad) - (D0/2) * (numerator/denominator))

# Calculate growth rate

### Plotting ####

fig, ax = plt.subplots()

ax.axhline(y=0, color = ’grey’, linestyle = ’--’, alpha = 0.2)

ax.plot(theta, sdot1, color=’r’, alpha= 0.4, label=’Analytical Solution’)

ax.plot(angleangle, s_calc, color=’b’, linewidth = ’0’, marker =’o’,

alpha= 0.7, label=’Numerical Solution’)

plt.title(f’Scaled Growth Rate at Set Angles ($D_0$ = {D0:.0f},

$_\perp$ = {lamper:.1f})’)

plt.xlabel(’Angle From Horizontal(°)’)

plt.ylabel("Scaled Growth Rate, $\dot{s}$’")

plt.legend(loc = ’lower left’)
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plt.savefig(f’benchmark__{D0:.0f}_{lamper:.1f}.png’, dpi=200)

plt.clf()

8.2 Example Code for Melt Evolution Model

"""

Code to model the shearing of two-phase dilatant partially molten rock.

"""

import numpy as np

import h5py

import dedalus.public as d3

import matplotlib.pyplot as plt

eta0 = 1 # Reference shear viscosity

Lam = 27 # Porosity dependent shear viscosity exponent

bgpor = 0.05 # Background porosity

n = 3 # Permeability exponent

A = 0.0001 # Amplitude of perturbation

H = 1 # Reference height of domain

compleng = H/4 # Compaction length

D0 = 2 # Dilatancy Factor

lamper = 1 # Particle Stress Anisotropy (Perpendicular)

timestepper = d3.CNAB2 # Timestepper used for IVP

timestep = 0.01 # Timestep progressed by each iteration

stop_sim_time = 1.5+timestep # Duration of model run

numtimesteps = round((stop_sim_time/timestep)) # Number of iterations done
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##### Parameters #####

Lx, Lz = 1, H # Domain Size

Nx, Nz = 32, 32 # Number of modes in x and z

dealias = 3/2 # Pad modes when transforming to grid space

dtype = np.float64

##### Bases #####

coords = d3.CartesianCoordinates(’x’, ’z’) # Setting up coordinate system

dist = d3.Distributor(coords, dtype=dtype)

# For Parallelisation, which I did not do

xbasis = d3.RealFourier(coords[’x’], size=Nx, bounds=(0, Lx), dealias=dealias)

# Create basis for calculations in x axis

zbasis = d3.ChebyshevT(coords[’z’], size=Nz, bounds=(-Lz/2 , Lz/2), dealias=dealias)

# Create basis for calculations in z axis

xbasisd = d3.RealFourier(coords[’x’], size=round(Nx*dealias), bounds=(0, Lx))

# Create basis for plotting in x axis

zbasisd = d3.ChebyshevT(coords[’z’], size=round(Nz*dealias), bounds=(-Lz/2 , Lz/2))

# Create basis for plotting in z axis

##### Fields #####
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p = dist.Field(name=’p’, bases=(xbasis,zbasis))

# Pressure field

u = dist.VectorField(coords, name=’u’, bases=(xbasis,zbasis))

# Perturbation velocity field

Inpor = dist.Field(name=’Inpor’, bases=(xbasis,zbasis))

# Constant background porosity field

por = dist.Field(name=’por’, bases=(xbasis,zbasis))

# Perturbation Porosity Field

tau_p = dist.Field(name = ’tau_p’)

# Tau term for gauge condition

tau_u1 = dist.VectorField(coords, name=’tau_u1’, bases=xbasis)

# Tau terms for velocity

tau_u2 = dist.VectorField(coords, name=’tau_u2’, bases=xbasis)

# Tau terms for velocity

tau_p1 = dist.Field(name=’tau_p1’, bases=xbasis)

# Tau terms for pressure

tau_p2 = dist.Field(name=’tau_p2’, bases=xbasis)

# Tau terms for pressure

tau_por = dist.Field(name = ’tau_por’)

# Tau term for gauge condition

##### Setup #####

x, z = dist.local_grids(xbasis, zbasis) # Create an x-z grid

ex, ez = coords.unit_vector_fields(dist) # Unit vectors

lift_basis = zbasis.derivative_basis(1)
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# Creates a derivative basis to apply tau_terms

lift = lambda A: d3.Lift(A, lift_basis, -1)

# Function to multiply with mode/element for selected basis,

necessary for enforcing boundary conditions

dx = lambda A: d3.Differentiate(A, coords[’x’]) # Partial Derivative in x

dz = lambda A: d3.Differentiate(A, coords[’z’]) # Partial Derivative in z

Inpor[’g’] = bgpor # Set background porosity field to a constant value

por.fill_random(’g’, seed=42, distribution=’normal’, scale=A)

# Create random perturbation porosity field

por[’g’] *= A/np.max(np.abs(por[’g’]))

# Normalise perturbed porosity field to be between set values

u[’g’][0] = 0 # Set inital horizontal velocity to 0

u[’g’][1] = 0 # Set inital vertical velocity to 0

snapshot = np.zeros((round(Nx*dealias),round(Nz*dealias), numtimesteps))

# Create grid which can be saved as HDF5 file for subsequent processing

##### Model #####

for i in range(0, numtimesteps):

# Progress the model for the number of timesteps required

##### Substitutions #####
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# Z Field (Creating a non-constant coefficient for z axis values)

y = dist.Field(bases=zbasis)

y[’g’] = z

# Identity Matrix

I = dist.TensorField(coords)

I[’g’][0,0] = 1

I[’g’][1,1] = 1

# Identity Matrix

J = dist.TensorField(coords)

J[’g’][0,1] = 1

J[’g’][1,0] = 1

# 1st Order reductions to apply tau terms

grad_u1 = d3.grad(u) - ez*lift(tau_u1)

grad_u2 = d3.TransposeComponents(d3.grad(u) - ez*lift(tau_u1))

dzP = dz(p) + lift(tau_p1)

grad_p = dx(p)*ex + dzP*ez

# Equation Substitutions

porbrac = (1 + por/Inpor)**n

R1 = (compleng/H)**2 # R1 substitutuion

R2 = 5/3 # R2 substitutuion

C = d3.trace(grad_u1) # Divergence of velosty field

srt = (grad_u1 + grad_u2 -(2/3)*C*(I)) # Deviaoric strain rate tensor

eta = eta0 * np.exp(-Lam*(por)) # Porosity perturbation dependent shear viscosity
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D_phi = D0*eta # Dilatancy prefactor

# Particle Stress Anisotropy

PSA = dist.TensorField(coords)

PSA[’g’][0,0] = 1

PSA[’g’][1,1] = lamper

srtr = (0.5 * (J + d3.grad(u) + d3.TransposeComponents(d3.grad(u))

- (2/3)*d3.div(u)*(I))) # Strain rate tensor for RHS

I1 = d3.Trace(srtr)

# Convert components to individual fields

srtr_xx = srtr@ex@ex

srtr_xy = srtr@ex@ez

srtr_yx = srtr@ez@ex

srtr_zz = srtr@ez@ez

# Calculate trace of squared tensor

# Calculate second invariant

I2 = np.sqrt((srtr_xx**2 + srtr_zz**2 + srtr_xy**2 + srtr_yx**2)/2)

# Calculate dilatancy stress

Dterm = D_phi*PSA*I2

##### Solvers #####
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# The code below is how the equations are inputted into the solver,

with the variables needing to be calculated stated top-most line

# LHS contains linear terms, RHS contains non-linear terms

problem1 = d3.NLBVP([p, u, tau_u1, tau_u2, tau_p1, tau_p2, tau_p],

namespace=locals())

problem1.add_equation("-C + R1 * div(porbrac * grad_p) + lift(tau_p2)

+ tau_p = 0") # Compaction Equation froma modified Darcy’s Law

problem1.add_equation("-grad_p + div(eta * srt) + R2*grad(C)

+ lift(tau_u2) = -div(eta*J) + div(Dterm) ") # Two phase Stokes equation

problem1.add_equation("u(z= Lz/2) = 0*ex + 0*ez")

# Perturbation velocity boundary condition

problem1.add_equation("u(z= -Lz/2) = 0*ex + 0*ez")

# Perturbation velocity boundary condition

problem1.add_equation("(grad_p@ez)(z= Lz/2) = 0")

# Pressure boundary condition

problem1.add_equation("(grad_p@ez)(z= - Lz/2) = 0")

# Pressure boundary condition

problem1.add_equation("integ(p) = 0")

# Gauge condition to create a sparse linear system on LHS

# Setting up solver to solve equations in problem1

solver1 = problem1.build_solver(ncc_cutoff=5e-3)

solver1.newton_iteration()

# Calculate resulting porosity field using porsity evolution equation

problem2 = d3.IVP([por, tau_por], namespace=locals())

problem2.add_equation("dt(por) + (y*ex + u)@grad(por) + por*div(u)
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+ tau_por = (1-Inpor)*div(u)")

problem2.add_equation("integ(por) = 0")

# Solve probelem2 to calculate porosity field

solver2 = problem2.build_solver(timestepper)

solver2.stop_sim_time = timestep

solver2.step(timestep)

print(i)

##### Plotting #####

# Create dealias grids

x_dealias, z_dealias = dist.local_grids(xbasisd, zbasisd)

# Add background porosity to perturbation field to get total porosity

port = dist.Field(name=’port’, bases=(xbasisd, zbasisd))

port[’g’] = por[’g’] + bgpor

# Update Snapshot so it can be saved as hdf5 file later

snapshot[:, :, i] = port[’g’]

# Gather for plotting (global array, if using MPI)

porg = port.allgather_data(’g’)

# Create meshgrid from x and z (use meshgrid for 2D data alignment)
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X, Z = np.meshgrid(x_dealias, z_dealias, indexing=’ij’)

# Set up plot

fig, ax = plt.subplots()

# Plot colourmap using

por_plot = ax.pcolormesh(X, Z, porg, cmap=’viridis’,

shading=’gouraud’, rasterized=True)

# Set axis titles, labels and axis ratios

ax.set_title(’Porosity’, loc=’left’)

ax.set_title(f’$D_0$ = {D0:.0f} $_\\perp$ = {lamper:.1f}

$\\gamma$ = {(i*timestep):.2f}’, alpha=0.5, loc=’right’)

fig.colorbar(por_plot, ax=ax)

ax.set_aspect(’auto’)

ax.set_xlabel(’x’)

ax.set_ylabel(’z’)

# Save plot

plt.savefig(f’IVP__{D0:.0f}_{lamper:.1f}_{i:.0f}.png’, dpi=200)

plt.close(fig)

plt.clf()

##### Saving #####

# Save HDF5 file for later processing or plotting
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with h5py.File(f’porosity_{D0:.0f}_{lamper:.1f}.h5’, ’w’) as f:

f.create_dataset(’field_data’, data=snapshot)

8.3 Additional Spectral Analysis of Dilatancy Bands

Figure 18: Spectral dataset showing how dominant band angles evolve with strain when
D0 = 2 and Λ⊥ = 0.8. The white dotted lines are the passive advection trajectories of bands
from simple shear, taken from Katz (2022). The white markers are band angles calculated
from PMR simple shear experiments. The squares are from Holtzman et al. (2003) and the
rhombi are from Holtzman et al. (2007). The dominant band angles matche experiments
well and is similar to when D0 = 2 and Λ⊥ = 1.0 shown in Figure 14.
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Figure 19: Spectral dataset showing how dominant band angles evolve with strain when
D0 = 2 and Λ⊥ = 1.2. The white dotted lines are the passive advection trajectories of bands
from simple shear, taken from Katz (2022). The white markers are band angles calculated
from PMR simple shear experiments. The squares are from Holtzman et al. (2003) and the
rhombi are from Holtzman et al. (2007). The dominant band angles are slightly shallower
than the experiments.
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Figure 20: Spectral dataset showing how dominant band angles evolve with strain when
D0 = 3 and Λ⊥ = 1.0. The white dotted lines are the passive advection trajectories of bands
from simple shear, taken from Katz (2022). The white markers are band angles calculated
from PMR simple shear experiments. The squares are from Holtzman et al. (2003) and the
rhombi are from Holtzman et al. (2007). The dominant band angles are much lower than
the experiments.
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8.4 Varying Poiseuille Flow Parameters

Figure 21: Simulation with a large forcing and small porosity perturbation showing the
porosity being redistributed to the margins of the model. Low-angle melt-rich bands are not
preserved.
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Figure 22: Simulation with a large forcing and porosity perturbation showing the preservation
of subtle melt-rich bands.
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Figure 23: Simulations with a medium porosity perturbation and medium forcing showing
the slight preservation of subtle melt-rich bands.
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8.5 Dyke Chemistry Data

Figure 24: Data from Brouxel (1991) showing elemental concentrations across a dyke transect
in the Trinity Ophiolite, Northern California, USA, consistent with more evolved melts at
the edges.
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Figure 25: Data from Nkono et al. (2006) showing elemental concentrations across a dyke
of the Motru Dyke Swarm, Southern Carpathians, Romania, consistent with more evolved
melts at the edges.
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