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1 Introduction12

Due to water flow over the oceanic sediment the porous seabed is often rippled. These obstruc-13

tions interact with the flow causing pressure gradients to build up, which drive flow through the14

sediment itself. Similar to surface wave induced flow within the sediment [Shum, 1992, 1993],15

this is yet another mechanism which facilitates exchange of minerals or Oxygen or there like16

with the water above[Rutherford and Boyle, 1995, Huettel et al., 1996, Evrard et al., 2012].17

The flow considered is very similar to wind interacting with dunes, which also drives a flow18

through the porous sand and for example transports humidity into the sand [Louge et al., 2010]19

So far this flow has been studied experimentally Savant et al. [1987], Thibodeaux and Boyle20

[1987], Louge et al. [2010], Musa et al. [2013] and numerically Meysman et al. [2007] there have21

been no attempts at finding an analytical solution for this flow.22

There are several decisions to be made for setting up a model. One is whether to include23

turbulence or not and if Reynolds numbers are assumed low or high. The situation on the24

continental shelf differs in this respect from the situation of oceanic currents. Kuzan et al.25

[1989] found that for a solid wavy interface with the flow parameters as we would expect them26

on the continental shelf, there is most likely flow separation and hence turbulence. Another is27

the form of the boundary condition at the permeable interface. The boundary may be realised28

by the following approaches:29

• Slip condition as described by Beavers and Joseph [1967] with Darcy’s law within the30

porous medium31
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• A Brinkman layer within the porous medium by using including the Brinkman term to32

the Darcy equation, together with continuity of the flow variables33

• A solid interface with Darcy flow in the porous medium driven by the pressure at the34

boundary.35

• A solid boundary as above, but including roughness (only applicable for turbulent flows)36

Here we assumed a flow at infinite Reynolds numbers, i.e. Euler flow or potential flow. In37

this case we can only impose a kinetic boundary condition which assumes a rigid wall. The38

plan is to perturb the found solution, assuming high but finite Reynolds numbers and small39

slopes, and impose the Beavers-Joseph boundary condition on this perturbed flow. This would40

be a solution of potential flow with a friction boundary layer. This still might severely limit41

the applicability of the model as turbulence was ignored. The set-up is depicted in Figure 142

The plan of work progress is:43

• solve inviscid irrotational flow in the fluid assuming a rigid boundary44

• obtain the streamline-coordinates (potential function and stream function)45

• add a boundary layer, i.e. perturb and assume:46

– standard boundary layer character (gradient mainly perpendicular)47

– only a small perturbation to the inviscid solution48

• obtain a formula for the perturbed streamfunction and boundary pressure49

• match series coefficients by using full Beavers-Joseph condition50

• use perturbed pressure at boundary to obtain corrected Darcy Flow51

As an alternative approximation the situation is analysed employing the slow viscous as-52

sumption of Stokes flow.53

x

y u ® HU , 0L as y ® ¥

y = hHxL i.e. v = uh '

 porous medium

water

Figure 1: Problem analysed

2 Potential flow past a rigid, sinusoidal bed54

As a first approximation, the flow is assumed to be inviscid. Having no initial vorticity we
get potential flow, i.e. we can write u = ∇φ for some function φ(x, y). Incompressibility of
the flow gives Laplace’s equation (1a). The boundary conditions are the far field condition
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of exterior flow u = (U, 0) (1b) and to leading order a stationary boundary at the sinusoidal
surface y = h(x) = ε/k cos(kx) (1c).

Velocity Potential: u = ∇φ, (1a)

Continuity Equation: ∇2φ = 0, (1b)

Far Field Condition: φ→ Ux as y →∞, (1c)

Stationary Boundary: φy = h′(x)φx on y = h(x) (1d)

First we non-dimensionalise the equations by writing x∗ = kx, y∗ = ky, φ∗ = kU−1φ and
h∗ = kε−1h = cos(x∗). This gives a new, easier system of equations (2) (the asterisks denote
dimensionless quantities)

∇∗2φ∗ = 0, (2a)

φ∗ → x∗ as y∗ →∞, (2b)

φ∗y∗ = εh∗′φ∗x∗ on y∗ = εh∗, (2c)

From now on the asterisks are left out for better readability. An asymptotic solution can55

be obtained by expanding φ (3a) in the slope ε and by moving the boundary condition (3b) to56

y = 0 using a Taylor series. These then give an iterative procedure to calculate a series for the57

potential (4) and (5).58

φ = φ(0) + εφ(1) + ε2φ(2) + . . . , (3a)

φy + εhφyy +
1

2
ε2h2φyyy + . . . = εh′φx + ε2h′hφxy + . . . on y = 0 (3b)

Substituting (3a) into (3b) allows to look at the boundary condition to varying orders in ε.59

O(1): φ(0)
y = 0, (4a)

O(ε): φ(1)
y = −hφ(0)

yy + h′φ(0)
x , (4b)

O(ε2): φ(2)
y = −hφ(1)

yy −
1

2
h2φ(0)

yyy + h′φ(1)
x + h′hφ(0)

xy , (4c)

...

O(εn): φ(n)
y =

n−1∑
i=0

hi

i!

(
h′
∂i+1

∂yi∂x
− h

i+ 1

∂i+2

∂yi+2

)
φ(n−1−i) (4d)

The solution for the velocity potential can be easily seen as the imaginary part of a complex,60

analytical function f(z) (6a). From the analysis of complex analytical functions we know that61

both the real and imaginary part satisfy Laplace’s equation. Via the Cauchy-Riemann equations62

we see that the real part gives the non-dimensional streamfunction ψ(x, y) (6c).63

The first few explicit calculations (5) of the series in φ illustrate the procedure to obtain all64

terms.65

φ(0) = x, (5a)

φ(1)
y |y=0 = − sin(x) ⇒ φ(1) = sin(x)e−y (5b)

φ(2)
y |y=0 = − cos(x) sin(x)− sin cos(x) = − sin(2x), ⇒ φ(2) =

1

2
sin(2x)e−2y (5c)

...
...
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Figure 2: Streamlines of the solution in the water and in the porous sediment

f(z) = iz + εeiz +
ε2

2
e2iz +

ε3

8

(
3e3iz + eiz

)
+ . . . , (6a)

φ(x, y) = Im f(x+ iy) = x+ ε sin(x)ey + . . . , (6b)

ψ(x, y) = −Re f(x+ iy) = y − ε cos(x)ey + . . . (6c)

Now Bernoulli’s equation is applied to obtain the pressure at the boundary. Note that the66

pressure is non-dimensionalised by the group ρU2. As expected this scaling shows that the67

hydrostatic pressure is a effect of order O(ε). We get a pressure in phase with the ripples,68

which is not supported by experiments, but is due to the simplifcation of ignoring the friction69

boundary layer and turbulence.70

const = p+
1

2
|∇φ|2 +

gy

U2k
(7a)

pbdy(x) = const− gε

U2k
cos(x)− 1

2
(1 + 2ε cos(x) + . . . ) (7b)

= −
(

1 +
g

U2k

)
ε cos(x) + . . . , wlog const =

1

2

3 Pressure induced Darcy flow71

To find the flow in the sediment we use Darcy’s Law in a non-dimensional form, with the
pressure from the fluid solution and decay at y = −∞:

uD = DaRe∇p (8a)

Da = κk2 (8b)

Re =
U

kν
(8c)

We additionally have continuity ∇ · uD = 0 which gives Laplace’s equation ∇2p = 0.72
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Again expand as a series in ε73

p = p(0) + ε · p(1) + ε2 · p(2) + . . . (9)

and match orders of ε74

p(0) + ε · p(1) + ε2 · p(2) + · · · = pbdy(x) = −
(

1 +
g

U2k

)
︸ ︷︷ ︸

=β

ε cos(x) + . . . (10)

Again this can be solved by means of a complex function, giving a potential and stream-75

function for the flow velocity inside the sediment.76

f(z) = DaReβε︸ ︷︷ ︸
=A

e−iz + . . . (11a)

φ(x, y) = Re f(x+ iy) = A cos(x)ey + · · · = DaRe · p(x, y) (11b)

ψ(x, y) = Im f(x+ iy) = −A sin(x)ey + . . . (11c)

4 Physically interesting quantities77

To obtain physical interesting quantities like flow times and fluxes we restrict ourselves to78

first order in ε. Also we assume a sinusoidal solution for the streamfunction with amplitude79

A = O (ε) and possible phase shift θ.80

streamfunction : ψ = −A sin(x+ θ)ey, (12a)

flow velocity : uD = (− sin(x+ θ), cos(x+ θ)) · Aey, (12b)

outwards surface normal : n = (ε sin(x), 1) (12c)

We will require two scalar path integrals. The first one being an infinitesimal part of the81

sand-water boundary. The line element ds is approximated to first order in ε.82

Γx∗ : x(λ) = (λ, ε cos(λ)) λ ∈ [x∗, x∗ + δx∗], (12da)∫
Γx∗

· d s =

∫ x∗+δx∗

x∗
·
√

1 + ε2 sin2(λ) dλ ≈
∫ x∗+δx∗

x∗
· dλ, (12db)

The second one being the integral along the individual pathlines, which are equivalent to83

streamlines and streaklines for a stationary flow like in this case. Hence the path equation84

is derived from ψ0 (x∗) = const = −A sin(x + θ)ey. The end points x∗ and x∗∗ come from85

the intersection of this with y = ε cos(x) which to leading order gives the equation ψ0(x) ≈86

−A sin(x+ θ).87

γx∗ : x(λ) =

(
λ, ln

(
ψ0 (x∗)

A
csc(λ+ θ)

))
, (12ea)∫

γx∗

· d s =

∫ x∗∗

x∗
· csc2(λ+ θ) dλ, (12eb)

x∗∗ = π − x∗ − 2θ + 2Nπ N ∈ Z (12ec)
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Figure 3: Streamlines of the solution in the water and in the porous sediment

Using this we can get some physically interesting quantities, all per unit length in z-direction88

and per wave length. First, the flux Φ through an infinitesimal part of the boundary89

Φ (x∗) =

∫
Γx∗

uD · (−n) d s =

∫ x∗+δx∗

x∗
(−A cos(λ+ θ) +O (Aε)) dλ

= −A cos(x∗)δx∗ +O
(
Aε+ A (δx∗)2) (6)

Second, the flow time T for a specific entry point x∗. Using the absolute value we do not90

need to fix the value of x∗∗ as the periodicity with 2Nπ only affects the sign, i.e. set N = 0.91

T (x∗) =

∫
γx∗

|uD|−1 d s ≈
∣∣∣∣∫ x∗∗

x∗

1

A
e−y csc2(λ+ θ) dλ

∣∣∣∣
≈
∣∣∣∣∫ x∗∗

x∗

sin(λ+ θ)

ψ0 (x∗)
csc2(λ+ θ) dλ

∣∣∣∣ =

∣∣∣∣∣ 1

ψ0 (x∗)

[
ln

(
tan

(
λ+ θ

2

))]x∗∗
x∗

∣∣∣∣∣
≈ 1

A
|csc (x∗ + θ)| · ln

(
tan2

(
x∗ + θ

2

)) (7)

Finally these two combined give the rate of added particles to the main water body due to92

washing out within the sand. Where we are given some ∆c (T, c0) describing the increase in93

concentration of water with a effective concentration c0 over a flow time of T throughout the94

sand. c0 is the difference of concentrations of the water concentration in the fluid body and95

the sand reference concentration. Hence after infinite time spend in the sand a fluid parcel has96

c0 = 0.97

The boundaries of the integral mark the regional change from inflow into the sand to outflow,98

which can be seen from the sign change of uD · n ≈ cos(x+ θ).99

We hence get an expression for the particle increase added to the fluid body from washing100

out.101

dn0

d t
=

∫ 3π/2−θ

π/2−θ
∆c (T (x∗) , c0) (−A cos (x∗))︸ ︷︷ ︸

Φ(x∗)

dx∗ (8)

If we now assume an exponential exchange with a constant concentration of cs i.e. ∆c (T, c0) =102 (
e−γT − 1

)
c0 we can determine the first order macroscopic exchange rate. To do this note that103

for small ε we have small A and hence large T (x∗). This means that to leading order ∆c ≈ 1104

and hence we get the total flux.105

dn0

d t
≈
∫ 3π/2−θ

π/2−θ
(cs − c0) (−A cos (x∗)) d x∗ = −A cos(θ)c0 (9)
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Note that c0 and n0 are closely related as the describe the concentration and the particle106

number, respectively, in the fluid body.107

Now in the case of purely potential flow we have obtained the results as follows:

θ = 0 (10a)

A = DaReβε = κk2 U

kν

(
1 +

g

U2k

)
ε =

κkUε

ν
+
κgε

νU
=
(
kU2 + g

) κε
νU

(10b)

This in particular implies that A is equal to the global exchange rate to leading order.108

For this result to be accurate we need: Re� 1, Da� 1 and ε� 1. But also Re cannot be109

to big as otherwise we get recirculation, turbulence or even sand liquefaction. Unfortunately110

the pressure is not linear in the sinusoidal disturbance and hence this does not provide a method111

for arbitrary disturbances.112

Hence the final result is in dimensional form:113

dn0

d t
≈ −

(
kU2 + g

) κε
νU
· c0 (11)

5 Streamline coordinates114

Introduce new coordinates defined by the streamfunction ψ(x, y) and the potential function115

φ(x, y). These present a natural coordinates system for developing a boundary layer see Ben-116

jamin [1959]. First the equations are developed. This is merely a algebraically difficult task117

and hence only the results are stated in form of the vorticity equation, (12), and in form of the118

momentum equation, (13). An expression for the tangential shear stress is also found (15). The119

boundary condition are given by mass conservation in normal direction across the boundary120

(14a) and the Beavers-Joseph condition on the tangential shear stress and tangential velocity121

(14b).122

(
ωψ

∂

∂φ
− ωφ

∂

∂ψ

)(
J∇2ω

)
= Re−1J∇4ω, (12a)

u =
√
J ωψ, v = −

√
J ωφ, (12b)

J = φx
2 + φy

2 = φxψy − φyψx = ψx
2 + ψy

2 (12c)

J (ωψωφψ − ωφωψψ) +
1

2
Jφ
(
ωφ

2 + ωψ
2
)

= −pφ +Re−1
(
J∇2ω

)
ψ

(13a)

J (ωφωφψ − ωψωφφ) +
1

2
Jψ
(
ωφ

2 + ωψ
2
)

= −pψ −Re−1
(
J∇2ω

)
φ

(13b)

(13c)

v|ψ=0 = vD|ψ=0 = − Re−1Da
√
J pψ

∣∣∣
ψ=0

, (14a)

τ |ψ=0 = ReDa−1/2 (u− uD)
∣∣
ψ=0

= ReDa−1/2
(
u+Re−1Da

√
J pφ

)∣∣∣
ψ=0

(14b)

τ = Re−1
((
φx

2 − φy2
)

(ωψψ − ωφφ) + 4φxφyωφψ − 2ψxyωφ + 2φxyωψ
)

(15a)

τ ≈ Re−1
(
φx

2 − φy2
)
ωψψ (15b)
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Note that in these coordinates the irrotational flow solution is simply ω = ψ, p = −J/2.123

Now the boundary layer solution is sought as a perturbation, i.e. assume a new streamfunc-124

tion ω = ψ + ω̃. Now two assumptions are made:125

• the standard boundary layer assumption that gradients normal to the boundary are much126

larger than gradients perpendicular to it.127

∂

∂φ
� ∂

∂ψ
(16)

• the assumption that the perturbation is small128

ω̃ � ψ (17)

The first assumption is well established and standardly used in boundary layer type solution.129

The second assumption however imposes a bigger problem: as we approach the boundary the130

perturbation grows and eventually can no longer be assumed small, especially as the irrotational131

streamfunction goes to 0. Hence this makes it impossible to impose the no slip condition, for132

example. However, as shall be seen the Beavers-Joseph condition imposes far less perturbation133

from the irrotational solution and hence can be imposed. Another limitation is that only one134

boundary condition of the two physically necessary can be imposed in this way.135

The full system used for the boundary layer is:

ζφ = Re−1ζψψ (18a)

ζ = J ωψψ (18b)

pφ = Re−1ζψ − (J ωψ)φ (18c)

ζ → 0 as ψ →∞ (18d)

ζ(φ, ψ) = ζ(φ+ 2π, ψ) (18e)

φx
2 − φy2

√
J

ωψψ|ψ=0 =
Re2

Da1/2
ωψ|ψ=0 +ReDa1/2 pφ|ψ=0 (18f)

This is a simple diffusion equation in the vorticity ζ and hence can be solved by separation of136

variables. Imposing both periodicity (??) and decay (??) we can get the general series solution:137

138

ζ =
∞∑
n=1

(
An cos

(
nφ−

√
nRe/2ψ

)
+Bn sin

(
nφ−

√
nRe/2ψ

))
e−
√
nRe/2ψ = (19)

Notes for further progress:139

• integrate equation to get p as series (IbPs)140

• integrate ζ equation once to replace ωψ as series in BC (show principle)141

• plug in series and equate terms (first order only)142

• get solution for p143

• integrate ζ twice to get formula for ω144
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6 Stokes Flow145

For Stokes flow we can make use of the similarity of the Darcy-Brinkmann-Forcheimer equation146

and the Navier-Stokes equation, as in this case in both regions the Reynolds number is small.147

Using a similar formulation as in we find following system:148

ε
∂u

∂t
+ ε2u · ∇u = −∇p+ µ̃∇2u−Bµ

k
u (20a)

∇ · u = 0 (20b)

Employing a stream funciton ψ, non-dimensionalising and ignoring inertial terms, i.e. as-149

suming stokes flow, we get a simple equation incorporating a discontinuous function α(x, y):150

151

∇4ψ = α∇2ψ (21)

Notes for further progress:152

• no-slip BC at given depth within sand153

• prescribe velocity at some height above sand154

• periodicity BCs at vertical boundaries155

• solve in rectangular domain156

• note: α is non zero constant in porous region and zero in the fluid157
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A Variables158

159

Basic Flow Variables
Variable Dimensionalisation Description

u U velocity of the fluid
φ U/k velocity potential, u = ∇φ
ψ U/k streamfunction, u = (ψy,−ψx)
p ρU2 pressure

160

Physical Parameters
Variable Description

ε waveslope
k wavenumber
U exterior velocity
ρ density
µ kinematic viscosity
ν dynamic viscosity
g gravity
κ permeability of the sediment
γ exchange coefficient
c0 concentration difference between the sand and the fluid

161

Non-dimensional Quantities
Variable Formula Description
Re = U/kν Reynolds number
Da = κk2 Darcy number
β =

(
1 + g

U2k

)
A = DaReβε

162

Path Integration Quantities
Variable Dimensionalisation Description

Γ U/k infinitesimal path along sediment boundary
γ U/k flow path through sediment
n 1/k normal to the sediment
ds 1/k infinitesimal arclength element
λ, dλ 1/k alternative parametrisation (in x-direction)

163

Variables related to Boundary Layer Approach
Variable Dimensionalisation Description

ω U/k streamfunction of viscos corrected flow
ω̃ U/k perturbation to inviscid streamfunction
J U2 jacobian
τ ρU2 stress
ζ Uk vorticity

164

Variables related to Stokes Flow Approach
Variable Description

ε porousity
µ̃ effective viscosity
B binary parameter

165
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