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1 Introduction

Strain localisation is a phenomenon that occurs in materials when plastic strain increments are localised
into narrow zones of increased deformation [SG19]. Its most common manifestations are shear band
formation and necking. Strain localisation has been related to failure in materials, making its analysis
of great relevance.

The phenomenon can be characterized as a loss of stability of a homogeneously deformed steady state
of the material [SG19]. For example, necking occurs as an material instability during tensile tests.
Prior to necking, plastic deformations are evenly distributed through the entire material. But as the
applied tensile force is being increased, the plastic strain increments stop being evenly distributed as
they get kind of ’trapped’ in a relatively smaller region in the material, forming a neck of deformation
(see Figure 1). Though plastic deformations get localized in the neck, elastic deformations might still
occur in the remaining part of the material after the onset of necking [Wik].

One of challenges in the numerical simulations is that strain localization generally induces a loss of
ellipticity of the steady-state governing equations in the classical description of materials (Cauchy con-
tinuum), which results in mesh-size dependency in Fine Elements simulations [SG19]. To circumvent
this issue, different regularization techniques have been investigated in the literature. In this report,
we will explore viscous regularization and Cosserat continuum.

In this report, we give an introduction to the analysis of strain localization using stability analysis.
The rest of the report is organized as follows. In Section 2, we review the basic concepts on the
mathematical description of materials and different deformation modes. In Section 3, we introduce the
perturbation theory approach for strain localization and use it to derive the localization condition for
a one-dimensional elastoplastic material under simple shearing. We conclude the section by showing
the failure of viscous regularization. In Section 4, we explore the Cosserat continuum theory and how
it can be used to regularize the strain localization problem.

2 Governing equations and constitutive laws

When a force is applied to a material, it deforms. From everyday experience, it is natural to assume
that the extent of the deformation, depends on of applied stress, but also on the specific material.
This intuition is formalized by the concept of constitutive law, which relate the applied stress to the
resulting strain, or deformation [How17]. In addition, as the material deforms, some quantities such
as the momentum and kinetic energy will be conserved. These conservation laws allow to derive the
governing equations of the system under study. These equations describe how the material under
straining will evolve in time and space.
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Figure 1: Schematic diagram of necking. Prior to necking, plastic strains are evenly distributed in the
material. After the onset of necking, plastic deformations (compression) will occur only in the necked
part of the material under load (credit: Wikipedia).

In the classical approach, materials are described as continuous distribution of particles, each being
represented by a point and characterized kinematically by a velocity ui. In that case, the Cauchy
momentum equation describes the evolution of the system under deformation, and is given by:

ρ
∂2ui
∂t2

= ρgi +
∂σij
∂xj

; (2.1)

where ρgi is the body force vector, σij is the stress tensor, and Einstein summation convention has
been used [How17]. Moreover, the strain tensor is defined by

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.2)

The very common experience of stretching rubber bands suggests that in some cases the material will
return to its initial shape and size almost instantaneously once the load is removed, in which case the
deformation is called elastic. In other cases, the material will undergo some irreversible deformations
once the applied stress reaches some critical value, called yield stress. Such deformations will be referred
to as plastic deformations. A common example of such a deformation comes from the experience of
bending a paper clip. If it is bent a little, it snaps back to its original shape. But if it is bent a lot, it
undergoes a permanent, plastic deformation.

Lastly, a solid material under deformation might behave partly like a fluid, showing some viscous
effects. In that case, the applied stress is proportional to the rate of deformation when the material
behaves like a Newtonian fluid. This kind of deformation is called viscous deformation and it generally
occurs in combination with elastic and/or plastic deformations [Kel][How17].

Different constitutive relations describe these kinds of deformations as described below.

2.1 Elastic deformation

For small deformations (ε� 1), nonlinear effects are negligible, and elastic deformations are described
by the following constitutive law

σij = Kεkkδij + 2G

(
εij −

1

3
εkkδij

)
, (2.3)
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Figure 2: Stress-strain response for elastic deformation. The modulus of elasticity is called Young’s
modulus.

Figure 3: Stress-strain response for viscoelastic deformations. The loading and unloading curves do
not coincide as there is a possibility of permanent deformations (credit: [Kel])

where K and G are material parameters describing its resistance to deformation, and are called bulk
modulus and shear modulus, respectively. In this case, the stress-strain response is linear (see Figure
2), and the deformation is completely reversible upon unloading [Kel].

2.2 Viscoelastic deformation

As mentioned earlier, viscoelastic deformations are dependent on the rate of straining dε
dt ; i.e., the

faster the stretching, the larger the stress required. In addition, with contrast to the elastic case, a
viscoelastic straining might leave some permanent deformation upon complete unloading. As a result,
the loading and unloading curves do not coincide (see Figure 3) [Kel].

The simplest descriptions of viscoelastic deformations are the Maxwell and Kelvin models. The
Maxwell model describes the material as a combination of a linear spring and dash-pot in series.
In that case, they share the same stress σ and the total strain ε = εe + εv is the sum of the elastic
strain εe of the spring and the viscous strain εv of the dash-pot. The constitutive relations of the two
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sub-systems are respectively given by:

σ = Eεe and σ = ηε̇v; (2.4)

where we focus on the scalar problem for simplicity.

Taking (2.4) into ε̇ = ε̇e + ε̇v then yields:

ε̇ = ε̇e + ε̇v

=
1

E
σ̇ +

1

η
σ,

from which we obtain the constitutive law:

σ +
η

E
σ̇ = ηε̇, (2.5)

where η is the viscosity of the fluid in the dash-pot and E is the Young’s modulus. The two parameters
describe the resistance of the material to deformation [Kel].

In the Kelvin description, the material is modeled as a linear spring and dash-pot in parallel. Hence,
they are subjected to different stresses but undergo the same strain ε. If we let σe and σv be the
stresses in the linear spring and the dash-pot, respectively, then total stress σ = σe + σv, and we have
the following equations:

σe = Eε and σv = ηε̇. (2.6)

Taking these into σ̇ = σ̇e + σ̇v then results into the following constitutive law:

σ = Eε+ ηε̇. (2.7)

More complex rheological models are obtained by combining the Maxwell and Kelvin models in different
ways (see [Kel]).

2.3 Elastoplastic deformations

Plastic deformations occur once the applied stress reaches a critical value called yield stress, and are
rate-independent. Rate-dependent permanent deformations that occur once the yield stress is reached
are classified as viscoplastic deformations [Kel]. In the plastic region, both elastic and plastic strains
occur, and hence strain increments can be written as

dεij = dεeij + dεpij , (2.8)

where dεe and dεe are the elastic and plastic strain increments, respectively [SG19]. Plastic strain
increments are related to the stress increments by

dσij = H dεpij , (2.9)

where H is called plastic modulus [Kel]. Moreover, constitutive laws are in general given by the
following equation:

dεpij = dλ
dg

dσij
, (2.10)

where the plastic multiplier λ depends on the specific yield criterion and g is the called plastic potential.
When g is equal to the yield function f , (2.10) is called associated flow-rule. Otherwise, it is called non-
associated flow rule. It is noteworthy that almost all the realistic problems in plasticity are modeled
by a non-associated flow rule [Kel].
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Figure 4: Stress-strain response for an elastic-perfectly plastic material. Once the yield stress σ0 is
reached, there is no need for additional stress for the material to continue to deform.

Figure 5: Stress-strain response for a plastic strain hardening material. In the plastic region, more
stress is needed to achieve additional deformation (credit: [Kel]).

5



Figure 6: Stress-strain response for a strain softening material in the plastic region (credit:L. Tey-
mouri).

Lastly, it is important to note that there are three modes of plastic deformations, which are determined
by the hardening modulus h = H

2G > −1. When h = 0, the material is said to be perfectly plastic (see
Figure 4). If h > 0, the material undergoes strain hardening, and additional stress is needed to further
deform the material (see Figure 5).

The last type of plastic response corresponds to the case where less stress is needed to achieve additional
strains once the material yields (see Figure 6). In that case, h < 0 and the material is said to undergo
strain softening [Kel].

3 Instances and solutions

As stated earlier, the onset of strain localization mathematically characterized as a loss of stability of
a homogeneous deformation state. In this section, we show how perturbation theory can be used to
derive the conditions under which strain localization can occur in Cauchy materials under elastoplastic
and elasto-viscoplastic flow rules.

3.1 General approach

The stability analysis of a homogeneous deformation state for strain localization follows the following
steps:

1. state the governing equations and constitutive laws describing the material under deformation;

2. assume a homogeneously deformed steady state ui = u∗i , σij = σ∗
ij and εij = ε∗ij ;

3. perturb the kinematic field around the steady state, ui = u∗i + ũi;

4. find the governing equation and constitutive law describing the deformation;

5. assume the deformation is a plane wave ũi = Uie
st+iknjxj and take this general form into the

equations obtained in the previous step;

6. the preceding step yields an algebraic equation in s. If all the solutions of this equation are
such that R[s] ≤ 0, the perturbation will not grow and the homogeneous deformation is stable.
Otherwise, the homogeneous deformation is unstable and any small perturbation from it will
grow up, leading to an inhomogeneous deformation, which is the onset of strain localization.
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In what follows, we apply this approach to an elastoplastic problem and a elasto-viscoplastic problem,
and show that strain localization is expected under strain softening conditions. The two problems
are taken from [SG19], and describe an infinite layer of material under simple shear. The system is
assumed to be invariant in the x1 and x3 directions, so that the problems are one dimensional. We
assume in addition that the flow is incompressible.

3.2 Elastoplastic problem

Here, the material is assumed to have an elastoplastic response, and the yield function is given by:

F = σ12 − τ0. (3.1)

In the plastic region, strain increments are split in elastic and plastic parts as in (2.8); where elastic
and plastic strain increments are described by (2.3) and (2.9), respectively.

As the system is invariant in the x1 and x3 directions, and we assumed incompressibility, the Cauchy’s
momentum equation (2.1) becomes:

ρü1 = ρg1 +
∂σ12
∂x2

. (3.2)

We consider a homogeneous deformation at steady state (üi = 0) in the plastic region, i.e., σ12 =
σ∗
12 = τ0 and u1 = u∗1. This state will be stable as long as any perturbation does not grow in time.

We perturb the displacement field as described in step 3. Then (3.2) yields

ρ¨̃u1 =
∂σ̃12
∂x2

. (3.3)

and from (2.3), we have

σ̃12 = 2Gε̃e12

dσ̃12 = 2Gdε̃e12

= 2G( dε̃12 − dε̃p12) by (2.8)

= 2G

(
dε̃12 −

1

H
dσ̃12

)
by (2.9)(

1 +
2G

H

)
d σ̃12 = 2Gdε̃12

dσ̃12 =
2G

1 + 2G
H

dε̃12

= 2G
H

2G
(
1 + H

2G

) dε̃12.

Hence,

σ̃12 = 2G

(
h

1 + h

)
ε̃12. (3.4)

As stated in Step 5, equation (3.3) admits a plane wave solution of the form

ũ1 = U1e
st+ikx2 ; (3.5)
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where the amplitude U1, the growth coefficient s ∈ C, and the wavenumber k are constants. Taking
this into (3.3) and (3.4) as described in Step 5, we obtain

ρs2ũ1 =
∂σ̃12
∂x2

= 2G

(
h

1 + h

)
∂ε̃12
∂x2

by (3.4)

= 2G

(
h

1 + h

)
∂

∂x2

1

2

∂ũ1∂x2
+
∂ũ2
∂x1︸︷︷︸
0


 by (2.2)

= G

(
h

1 + h

)
∂2ũ1
∂x22

= G

(
h

1 + h

)
(ik)2ũ1.

Hence,

ρs2 = G

(
h

1 + h

)
(ik)2,

and

s = ±i kvs
√

h

1 + h
; (3.6)

where vs =
√

G
ρ is the S-wave phase speed.

As described in Step 6, the homogeneous deformation is unstable if R[s] > 0. Equation (3.6) shows
that this is equivalent to having h < 0. Therefore, strain localization is expected when the material
is strain softening. In addition, the growth coefficient s is inversely proportional to the wavelength
λ = 2π

k , becoming infinite as λ → 0 (see Figure 7). As a result, narrow perturbations will grow
faster and the deformation band width is unrealistically zero, inducing mesh-size dependency in Finite
Elements calculations [SG19]. To go around this issue, different regularization techniques have been
proposed in the literature, with the goal of avoiding strain localization for zero wavelength. In the
rest of this section, we examine viscous regularization and Cosserat regularization is investigated in
the next section.

3.3 Elasto-viscoplastic problem

As shown below, introducing viscous effects slows down perturbations occurring at very small wave-
lengths. This alleviates mesh-size dependency but does not regularize the problem.

With contrast to the elasto-plastic problem, the material of the layer is assumed here to have an
elasto-viscoplastic response. Hence, strain increments after yield are given by:

ε̇ij = ε̇eij + ε̇vpij , (3.7)

and the viscoplastic strain increments are assumed to be described by the Perzyna’s model:

ε̇vpij = λ̇
∂F

∂σij
(3.8)

and λ̇ =
F

ηf0
(3.9)
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Figure 7: Growth coefficient vs wavelength of perturbation. Observe that small perturbations will
grow faster. In addition, the fact that s→∞ as λ→ 0 has been associated to mesh-size dependency
in FE calculations (see [SG19] for more details).

where η expresses viscosity, f0 is the value of τ0 at first yield, and the plastic modulus H is given by

dτ0
dεvpij

= H. (3.10)

The first step is to rewrite the constitutive law in a suitable form. From (3.1), we have:

Ḟ = σ̇12 −
∂τ0
∂εvp12

ε̇vp12 (3.11)

= σ̇12 −H ε̇vp12 . (3.12)

Taking (3.12) into (3.9) yields:
Ḟ = ηf0λ̈ = σ̇12 −H ε̇vp12 . (3.13)

Plugging (3.7) into yields:

σ̇12 = H (ε̇12 − εe12) + ηf0λ̈

= H

(
ε̇12 −

σ̇12
2G

)
+ ηf0λ̈ by (2.3);

and (
1 +

H

2G

)
σ̇12 = Hε̇12 + ηf0λ̈.

As one has λ̈ = ε̈vp12 by (3.1) & (3.8), the constitutive law can be written as:

σ̇12 = 2G
h

1 + h
ε̇12 +

ηf0
1 + h

ε̈vp12 , (3.14)

where h = H
2G is the hardening modulus as before.

We now assume that the system is in a steady state of homogeneous deformation as in the previous
problem. Assuming a perturbation ũ1 = u1 − u∗1 from the homogeneous deformation of the form

ũ1 = U1e
st+ikx2 , (3.15)
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we have:

¨̃ε12 =
1

2

∂ ¨̃u12
∂x2

= s
1

2

∂ ˙̃u12
∂x2

= s ˙̃ε12;

˙̃εe12 + ˙̃εvp12 = ˙̃ε12

= sε̃12

= sε̃e12 + sε̃vp12

⇒ ˙̃εe12 = sε̃e12 and ˙̃εvp12 = sε̃vp12 ;

and ˙̃σ12 = 2G˜̇εe12

= 2Gsε̃12

= sσ̃12.

(3.16)

Taking (3.16) into (3.14) yields:

σ̃12 = 2G
h

1 + h
ε̃12 +

ηf0
1 + h

˙̃εvp12 , (3.17)

which, by (2.3) & (3.7), can be rewritten as:

σ̃12 = 2G
h

1 + h
ε̃12 +

ηf0
1 + h

˙̃ε12 −
1

2G

ηf0
1 + h

˙̃σ12. (3.18)

Now, (3.14) can be used in (3.18) in form of successive substitutions to give:

σ̃12 = 2G
h

1 + h
ε̃12 +

ηf0
(1 + h)2

˙̃ε12 −
1

2G

(ηf0)2

(1 + h)3
¨̃ε12 +

1

4G2

(ηf0)3

(1 + h)4
...
ε̃ 12 − · · · (3.19)

Retaining only the first two terms of this series for simplicity, the constitutive law (3.19) for the
perturbed system reads:

σ̃12 = 2G
h

1 + h
ε̃12 +

ηf0
(1 + h)2

˙̃ε12. (3.20)

From here, the idea is to proceed in the same way as we did for the elasto-plastic problem. In that
regard, we take the general form (3.15) of the perturbation into the governing equation (3.3) and make
use of the constitutive law (3.20) to obtain, after some algebra:

s2 + v2s
ηf0

2G(1 + h)2
k2s+ v2s

h

1 + h
k2 = 0.

Thus,

s = −v2s
ηf0

4G(1 + h)2
k2 ± 1

2

√(
v2s

ηf0
2G(1 + h)2

k2
)2

− 4v2s
h

1 + h
k2. (3.21)

From (3.21), it is evident that the instability condition R[s] > 0 is equivalent to having h < 0. Indeed,
if we let b = v2s

ηf0
2G(1+h)2 k

2 and c = v2s
h

1+hk
2, then (3.21) is equivalent to

s = − b
2
±

√(
b

2

)2

− c. (3.22)

As b > 0, R[s] ≤ 0 whenever c ≥ 0. In addition, if c < 0, which is equivalent to h < 0, then b2

4 −c >
b2

4 ,
so that one solution of (3.22) is such that s > 0. This means that localization would occur only for
strain softening materials. This is in agreement with what was observed for the elasto-plastic problem.

In addition, (3.21) shows that the growth coefficient s still has its maximum at λ = 0 as in the elasto-
plastic case. Nonetheless, with contrast to what was observed in that case, the growth coefficient s is
bounded here, as it can be seen in Figure 8.
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Figure 8: Perturbation growth coefficient s vs wavelength λ for a strain softening material with elasto-
viscoplastic response under simple shearing. With contrast to the elasto-plastic case, the growth
coefficient s is bounded as a result of viscous effects.

As a conclusion, viscous effects have the potential of alleviating the mesh-size dependency problem as
they keep the growth coefficient bounded, but the approach does not regularize the strain localization
problem as it is still independent of the wavelength λ, and predicted to occur for λ = 0.

We will see in the next section that the problem can be regularized using Cosserat continuum theory.

4 Cosserat continuum regularization

Cauchy continuum theory provides a macroscale description of materials. In that regard, a material
is modeled as a continuous distribution of particles, each being represented by a point and can only
translate when the material is under deformation. On the other hand, Cosserat continuum theory
considers each particle of the material as a rigid body of non-negligible size, which can thus undergo
both translations and rotations during deformations. This allows to take into account microscopic
rotations and provides a more realistic framework for the study of localization problems [SG19].

By incorporating different scales, Cosserat theory naturally introduces internal length scales that allow
the regularization of the strain localization problem. It is important to note that Cosserat continuum
theory can be embedded in the general Micromorphic continua theory, which is part of the Multiscale
modeling approach in Mathematics [SG19].

In what follows, we start by providing an overview of the Cosserat continuum theory and then use it
to investigate the conditions for strain localization onset for the elasto-plastic problem studied earlier.
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4.1 Mathematical description

For a Cosserat continuum, the Cauchy’s momentum equation is replaced by the following equations
[SG19][RSS18]:

∂τij
∂xj

+ fi = ρüi, (4.1)

∂mij

∂xj
− εijkτjk + ψi = Iω̈ci ; (4.2)

where:

• ui is the displacement vector;

• ωcij = −εijkωck is the micro-deformation tensor, called Cosserat rotation tensor;

• τij is the Cosserat stress tensor, generally non-symmetric;

• mij is the Cosserat couple-stress tensor;

• fi and ψi express body forces and moments, respectively;

• ρ is the material density, and I its micro-inertia; and

• εijk is the Levi-Civita permutation symbol.

We saw that for a Cauchy continuum, deformations are described by the strain tensor εij defined in
(2.2). For a Cosserat continuum, deformations are described by a generalized strain tensor, γij , and a
curvature tensor κij , as follows:

γij = ui,j + εijkω
c
k, (4.3)

κij = ωci,j . (4.4)

Hence, constitutive relations are of the form τij = τij(γij , κij) and mij = mij(γij , κij). It is usually
convenient to split the strain tensor γij into its symmetric part γ(ij) and antisymmetric part γ[ij], and
so for the curvature tensor κij . Doing so, (4.3) & (4.4) read [RSS18]:

γ(ij) =
1

2
(ui,j + uj,i) , Ωij =

1

2
(ui,j − uj,i) , (4.5)

γ[ij] = Ωij − ωcij , γij = γ(ij) + γ[ij], , (4.6)

and similarly for κij and τij .The tensors γ(ij) and Ωij describe macroscopic strains and rotations
(vorticity), while ωcij describes rotations that occur at the micro-scale [RSS18]. Such decomposition
into symmetric and antisymmetric parts can also be performed for the stress tensor τij and the couple-
stress tensor mij .

4.2 Regularization of an elasto-plastic localization problem

The strain localization problem that we investigate here comes from [SG19] and considers an elasto-
plastic Cosserat medium with yield surface given by:

F = τ(12) − τ0, (4.7)

where τ(12) is the symmetric part of the stress tensor τ12. The flow is assumed to be incompressible,
and invariant in the x1 and x3 directions as in the Cauchy continuum case. In addition, the material
is assumed to have an elasto-plastic behavior:

γ̇ij = γ̇eij + γ̇pij , (4.8)

κ̇ij = κ̇eij + κ̇pij ; (4.9)
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where the elastic response is determined by the following constitutive laws:

τij = Kγekk + 2G

(
γe(ij) −

1

3
γekkδij

)
+ 2η1Gγ

e
[ij], (4.10)

mij = 4GR2
(
κeij + η2κ

2
kkδij

)
+ 4η3GR

2κe[ij]; (4.11)

where the ηi, i = 1, 2, 3, are positive material parameters, and K and G are, respectively, the bulk and
shear moduli, as before. Here, the particles of the Cosserat medium are identified as spherical grains

of radius R and negligible mass. This implies that the micro-inertia is I = R2

2 in 2D, or I = 2
5R

2

in 3D [RSS18]. As the flow is incompressible, and invariant in the x1 and x3 directions, the balance
equations (4.1)-(4.2) reduce to:

∂τ12
∂x2

+ f1 = ρü1; (4.12)

∂m32

∂x2
+ τ21 − τ12 + ψ3 = Iω̈c3. (4.13)

We now assume that at steady we have a Cauchy continuum under homogeneous shear, so that
τ(12) = τ∗(12) = τ0, τ[12] = τ∗[12] = 0, m32 = m∗

32 = 0, and ui = u∗i , ω
c
i = ωc∗i . We are interested in

the conditions under which this homogeneous state will be unstable, leading to strain localization.
Proceeding the same way as we did for the Cauchy continuum, we perturb kinematic fields around the
steady state:

ui = u∗i + ũi and ωci = ωc∗i + ω̃c. (4.14)

Taking this in (4.12) & (4.13), we obtain:

∂τ̃12
∂x2

= ρ¨̃u1; (4.15)

∂m̃32

∂x2
+ τ̃21 − τ̃12 = I ¨̃ωc3. (4.16)

As in the previous section, we have now to find new constitutive relations describing the perturbed
system. From (4.10), we have:

τ̃12 = 2Gγ̃e(12) + 2Gη1γ̃
e
[12],

from which we have:

τ̃(12) = 2Gγ̃e(12), and (4.17)

τ̃[12] = 2Gη1γ̃
e
[12] = 2Gη1γ̃[12]; (4.18)

where we have taken γ̃p[12] = 0 for simplicity. This means that at the macroscopic scale, plastic defor-

mations of the Cosserat medium are taken to be identical to plastic strains for a Cauchy continuum.
Proceeding the exact same way as in the derivation of (3.4), (4.17) yields:

τ̃(12) = 2G
h

1 + h
γ̃(12). (4.19)

Similarly, (4.11) yields:
m̃32 = 4GR2κ̃32, (4.20)

where we have again taken η3 = 1 for simplicity.

From here, the idea is to assume that the perturbations ũ1 and ω̃c3 are plane waves, i.e.

ũ1 = U1e
st+ikx2 , (4.21)

ω̃3 = Ω3e
st+ikx2 ; (4.22)
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and use the governing equations (4.15) & (4.16), and the constitutive relations (4.18)-(4.20) to derive
an equation relating the growth coefficient s to material parameters.

From (4.15), we have:

ρ¨̃u1 =
∂τ̃12
∂x2

=
∂τ̃(12)

∂x2
+
∂τ̃[12]

∂x2

= 2G
h

1 + h

∂γ̃(12)

∂x2
+ 2Gη1

∂γ̃[12]

∂x2
by (4.18) & 4.19)

= G
h

1 + h

∂2ũ1
∂x22

+Gη1
∂2ũ1
∂x22

+ 2Gη1
∂ω̃c3
∂x2

by (4.4) - (4.6)

Taking (4.21) and (4.22) into this last equation yields:[
Gk2

(
η1 +

h

1 + h

)
+ ρs2

]
U1 − i 2kη1GΩ3 = 0. (4.23)

Considering the other governing equation, and using I = R2

2 , we obtain:

∂m̃32

∂x2
+ τ̃21 − τ̃12 =

R2

2
¨̃ωc3,

∂m̃32

∂x2
− 2τ̃[12] =

R2

2
¨̃ωc3 since τ̃(21) = τ̃(12) and τ̃[21] = −τ̃[12],

4GR2 ∂κ̃32
∂x2

− 4Gη1γ̃[12] =
R2

2
¨̃ωc3 by (4.18) & (4.20),

4GR2 ∂
2ω̃c3
∂x22

− 4Gη1ω̃
c
3 − 2Gη1

∂u1
∂x2

=
R2

2
¨̃ωc3 by (4.4) - (4.6).

Taking (4.21) & (4.22) into this last equation, we obtain:

i4Gkη1U1 +
[
8G(η1 + k2R2) +R2s2

]
Ω3 = 0. (4.24)

Equations (4.23) and (4.24) form a linear system, which, in matrix notation, gives:

[
Gk2

(
η1 + h

1+h

)
+ ρs2 −i 2kη1G

i4Gkη1 8G(η1 + k2R2) +R2s2

] [
U1

Ω3

]
= 0. (4.25)

Since U1 6= 0 and Ω3 6= 0, (4.25) yields:

det

[
Gk2

(
η1 + h

1+h

)
+ ρs2 −i 2kη1G

i4Gkη1 8G(η1 + k2R2) +R2s2

]
= 0;

from which we obtain:

R2ρs4 +
[
GR2k2(H + η1 + 8ρ) + 8Gη1ρ

]
s2 + 8G2k2R2

[
k2(H + η1) +

Hη1
R2

]
= 0; (4.26)

or
ξ2 + bξ + c = 0, (4.27)
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where

ξ = s2, H =
h

1 + h
, (4.28)

b = v2sk
2(H + η1) + 8G

(
k2 +

η1
R2

)
(4.29)

c = 8Gv2sk
2
[(
k2 +

η1
R2

)
H + η1k

2
]

(4.30)

Letting ∆ = b2 − 4c, the growth coefficient s is given by

s = ±

√
− b

2
±
√
b2

4
− 2c, (4.31)

with the following cases.

1. ∆ < 0 ⇒ I [ξ1] 6= 0 and I [ξ2] 6= 0. Since the square roots of a complex number are π radians
apart on a circle, and b 6= 0, two solutions of (4.26) are such that R[s] > 0. Hence, strain
localization is expected when ∆ > 0.

2. ∆ = 0 ⇒ ξ = − b
2 . If b ≥ 0, then R[s] = 0. Otherwise, one solution of (4.26) is such that

R[s] > 0, and the homogeneous deformation state is unstable.

3. ∆ > 0⇒ I [ξ1] = I [ξ2] = 0. In this case, we have the following scenarios.

• If b > 0 and c > 0, then ξ1 < 0 and ξ2 < 0. Hence, R[s] < 0, and the homogeneous state is
stable.

• If b < 0 and c > 0, then ξ1 > 0 and ξ2 > 0. Therefore, (4.26) has two solutions such that
R[s] > 0, implying that the homogeneous deformation state is unstable.

• If c < 0, then for all values of b, ξ1 > 0 and ξ < 0. Hence, (4.26) has one solution such
that R[s] > 0. Notice that whenever c < 0, ∆ > 0. This means that the condition c < 0
is sufficient for strain localization. In addition, it is evident from (4.30) that to have c < 0,
we have to have:

– H < 0, which is equivalent to h < 0, and

–
(
k2 + η1

R2

)
H + η1k

2 < 0, or equivalently

λ > λc = 2πR

√
−
(

1

H
+

1

η1

)

= 2πR

√
−1 + h

h
− 1

η1

(4.32)

This shows that, for a Cosserat continuum, the strain softening condition is not sufficient for strain
localization. The wavelength of perturbation has, in addition, to be larger than the critical value given
in (4.32) for localization to occur. This is in contrast with the observation made for Cauchy continua,
and showcases the effectiveness of the Cosserat continuum theory in the regularization of the strain
localization problem. In addition (4.32) shows that λc is proportional to the Cosserat internal length,
R. In Figure 9, we plot the perturbation growth coefficient s vs the wavelength λ in the case c < 0.
Notice that s stays finite for a Cosserat material, and the strain localization problem is regularized as
the s reaches its maximum for a value of λ > λc > 0. It is important to note that (4.32) comes with
the extra condition that η1 + h

1+h < 0.
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Figure 9: Perturbation growth coefficient s vs wavelength λ for a Cosserat strain softening material
with linear elasto-plastic response under simple shearing. With contrast to the Cauchy material, the
wavelength of the perturbation has to be larger than a critical value λc for strain localization to occur.
This showcases the effectiveness of the Cosserat continuum regularization.

It is worth noting that though Stefanou et al. [SG19] stated the same expression for the critical
wavelength λc, (4.32 cannot be derived from their expression for the perturbation growth coefficient
s. In addition, we would like to emphasize that we failed to derive a critical wavelength using the
simplifying assumption I = 0 used in [SG19]. This might be due to the fact that I is proportional
to the internal length R, which plays a key role in Cosserat regularization. Moreover, we think that
assuming I = 0 can be very confusing as it is the same as assuming R = 0. An alternative assumption
to I = 0, which Stefanou et al [SG19] probably meant, would be ¨̃ωc3 = 0. Nonetheless, we think
that neither this assumption, nor I = 0, should be considered when studying the strain localization
problem.

5 Conclusion

In this research, we explored the plastic strain localization phenomenon which is ubiquitous in ma-
terials, especially geomaterials. We started by reviewing the underlying concepts from continuum
mechanics and then we presented how perturbation theory can be used to derive conditions for lo-
calization in a rather hands-on approach. We showed that strain localization is expected for strain
softening Cauchy materials with an elastoplastic response. In addition, we observed that the growth
coefficient of the perturbation was predicted to become unbounded at vanishing perturbation wave-
lengths, resulting in a temporal singularity. As a consequence, the width of the localization zone was
unrealistically predicted to be zero (spatial singularity) [SG19]. To avoid theses issues, some regular-
ization techniques were introduced. Specifically, we explored viscous regularization and showed that
though it fixed the temporal singularity problem by keeping the growth coefficient bounded at van-
ishing wavelengths, it still predicted the occurrence of strain localization on a mathematical plane.
We went on exploring the Cosserat continuum theory and how can be used in regularizing the strain
localization problem. This approach proved to be very effective in remedying both the temporal and
spatial singularities. The effectiveness of the Cosserat continuum approach was attributed to the inter-
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nal wavelength it embodies. Indeed, by taking into account the both the macroscopic and microscopic
scales of materials, the Cosserat continuum theory introduces internal length scales that the classical
Cauchy continuum failed to take into account, and the predictions showed that these internal length
scales play a major role in the regularization of the strain localization problem.

Acknowledgements

This research was carried as part of the Mfano Africa-Oxford Virtual Mentorship Programme. We
would like to express our gratitude to Professor Richard F. Katz for his willingness to supervise this
research and for the special attention that he has given us during all the stages of this project. We
would also like to thank the Mathematical Institute at the University of Oxford, Mfano Africa and all
the people involved for the opportunity given us to be part of the life-changing Mfano Africa-Oxford
Virtual Mentorship Programme.

17



References
[How17] Peter Howell. Elasticity and plasticity (lecture notes). 2017.

[Kel] PA Kelly. Mechanics lecture notes: An introduction to solid mechanics. http://homepages.
engineering.auckland.ac.nz/~pkel015/SolidMechanicsBooks/index.html.

[RSS18] Hadrien Rattez, Ioannis Stefanou, and Jean Sulem. The importance of thermo-hydro-
mechanical couplings and microstructure to strain localization in 3d continua with application
to seismic faults. part i: Theory and linear stability analysis. Journal of the Mechanics and
Physics of Solids, 115:54–76, 2018.

[SG19] Ioannis Stefanou and Eleni Gerolymatou. Strain localization in geomaterials and regu-
larization: rate-dependency, higher order continuum theories and multi-physics. https:

//coquake.eu/wp-content/uploads/2019/10/ALERT_2019.pdf, 2019.

[Wik] Wikipedia. Necking (engineering). https://en.wikipedia.org/wiki/Necking_

(engineering) (accessed: 06-09-2021).

18

http://homepages.engineering.auckland.ac.nz/~pkel015/SolidMechanicsBooks/index.html
http://homepages.engineering.auckland.ac.nz/~pkel015/SolidMechanicsBooks/index.html
https://coquake.eu/wp-content/uploads/2019/10/ALERT_2019.pdf
https://coquake.eu/wp-content/uploads/2019/10/ALERT_2019.pdf
https://en.wikipedia.org/wiki/Necking_(engineering)
https://en.wikipedia.org/wiki/Necking_(engineering)

	Introduction
	Governing equations and constitutive laws
	Elastic deformation
	Viscoelastic deformation
	Elastoplastic deformations

	Instances and solutions
	General approach
	Elastoplastic problem
	Elasto-viscoplastic problem

	Cosserat continuum regularization
	Mathematical description
	Regularization of an elasto-plastic localization problem

	Conclusion

