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1 Introduction

The mechanics of partially molten regions of the mantle are not well understood- in part
due to the inaccessibility of these regions to observation. However it is widely agreed that
experiments performed on synthetic mantle rocks [e.g King et al., 2010] act as a reasonable test
of theoretical models of magma dynamics. One consistently observed feature of experiments on
partially molten mantle rocks deformed under strain is the emergence of high-porosity bands
at angles between 15◦ and 20◦ to the shear plane.

A number of theoretical approaches have been made to reproduce the formation of these
low angle bands in models. The most recent of these, for example by Katz and Takei [2013],
have involved the inclusion of anisotropic viscosity arising from the grain-scale distribution
of melt, as formulated by Takei and Holtzman [2009]. It is reasonable to assume that the
melt-preffered orientation (MPO) may also lead to anisotropy in permeability- the effects of
which are unexplored. In this project I investigate the impact of anisotropic permeability on
the dynamics of partially molten rock, specifically on its role in low-angle band formation in
deformation under simple shear.

2 Governing Equations

2.1 Conservation statements

The two-phase flow theory involves the evolution of liquid volume fraction φ, liquid velocity vL,
liquid pressure pL, matrix velocity vS and the average stress of the two-phase aggregate, σij.
These are related by mass conservation equations for the liquid and solid phases and momentum
conservation equations for the liquid phase and the bulk mixture.

∂ρLφ

∂t
+∇ ·

[
ρLφvL

]
= Γ, (1a)

∂ρS(1− φ)

∂t
+∇ ·

[
ρS(1− φ)vS

]
= −Γ, (1b)

1

ηL
K
[
∇pL − ρLg

]
= φ

(
vS − vL

)
, (1c)[

σij + pLδij
]
,j

+ ρ̄gi = pL,i , (1d)

where ρL and ρS are the densities of liquid and matrix respectively, ρ̄ = (1− φ)ρS + φρL is the
average aggregate density, Γ is the melting rate, g is the gravitational acceleration and ηL is
the liquid viscosity. Allowing for anisotropic permeability, K is a tensor rather than a scalar.
We assume no melting, and the solid and liquid densities are constant and equal (ρL = ρS = ρ).
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Figure 1: Background simple-shear flow, v, and melt pocket allignment due to applied stress

2.2 Constitutive relations

To close the system of partial differential equations (1) requires the specification of constitutive
relations between stress and strain, and between permeability K and porosity φ. We use the
Newtonian, isotropic viscous constitutive relation between stress, σij, and strain of the matrix,
ε̇ij = (vSi,j + vSj,i)/2. The permeability tensor, K = K(φ), is given by the closure condition

K(φ) = K0

(
φ

φ0

)n
A (2)

where n is a constant, usually taken as two or three, φ0 is a reference porosity, K0 is a reference
scalar permeability and A is a non-dimensional tensor determined by the form of the perme-
ability anisotropy (note that A could depend on other variables, particularly stress σij which
can cause MPO).

Then the four equations (1) can be combined to eliminate vL (and denote matrix velocity
as v), resulting in the system

∂φ

∂t
= ∇ · [(1− φ)v] , (3a)

∇ · v = ∇ ·
[

1

ηL
K
(
∇pL − ρg

)]
, (3b)

∇pL = ∇ ·
[
η(∇v +∇vT )

]
+∇

[(
ξ − 2

3
η

)
∇ · v

]
+ ρg, (3c)

where η and ξ correspond to the shear and bulk viscosity of the matrix.
Finally we take a porosity dependence of η given by the exponential form

η(φ) = η0e
−λ(φ−φ0), (4)

with constants η0, φ0 and λ (≈ 27) and assume bulk viscosity ξ(φ) can be related to η as

ξ(φ) = rξη(φ), (5)

where rξ takes a constant value rξ = 5/3.

2.3 Background flow and scaling

We consider a background flow of two dimensional simple-shear in an infinite domain, with
velocity

v = (γ̇y, 0) (6)
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and uniform porosity, φ = φ0 which we take as φ0 = 0.05 for the extent of this paper. Here γ̇ is
the rate of simple-shear strain and the x and y axes are taken to be parallel and perpendicular
to the (one-dimensional) shear plane, respectively, as shown in Figure 1. γ̇−1 provides a time
scale for the flow, and a natural length scale is provided by the compaction length

δc =

√
(rξ + 4/3) η0K0

ηL
, (7)

which defines a length scale over which compaction pressure transmits information about phys-
ical disturbances in the medium. With these scales and the previous reference parameters we
introduce scaled variables as follows:

X = x/δc

V = v/ (γ̇δc)

K∗ = K/K0 = (φ/φ0)
nA

P = (pL − ρg · x)/η0γ̇

η∗ = η/η0 = e−λ(φ−φ0)

τ = γ̇t

(8)

With respect to these scaled variables the equations of motion become

∂φ

∂τ
= ∇ · [(1− φ)V ] , (9a)

∇ · V =
1

rξ + 4/3
∇ · [(φ/φ0)

n A∇P ] , (9b)

∇P = ∇ ·
[
η∗(∇V +∇V T )

]
+∇ [η∗ (rξ − 2/3)∇ · V ] , (9c)

We further introduce the compaction rate C ≡ ∇ · V , where a positive value of C corre-
sponds to decompaction. It is clear that the background flow has no compaction (so porosity
is constant) and no pressure gradients, so anisotropic permeability has no effect on the flow.

3 Formulation of anisotropic permeability

Suppose that an applied stress leads to melt pocket allignment as in Figure 1, where the σ3-
direction is the direction of maximum tensile stress. We make the modelling assumption that
this form of MPO leads to an anisotropy in permeability such that permeability is low in the
x′-direction and high in the y′-direction (as shown in Figure 1), and we define Θ as the angle
between the x′-axis and the x-axis.

For this assumption, with respect to the x′ and y′ axes we have

A′ =

(
α γ1
γ2 β

)
(10)

where β ≥ 1 and 0 ≤ α ≤ 1. A simple symmetry argument (provided in Appendix A) shows
that A′ should be diagonal and so we can set γ1 = γ2 = 0. Then, by using the rotation matrix

R =

(
cos Θ − sin Θ
sin Θ cos Θ

)
, (11)

the anisotropy matrix in the continuum coordinates is written as

A = RA′RT =

(
α cos2 Θ + β sin2 Θ (α− β) cos Θ sin Θ
(α− β) cos Θ sin Θ α sin2 Θ + β cos2 Θ

)
. (12)
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4 Linear Stability Analysis

We consider the linear stability of sinusoidal perturbations of initial amplitude ε� 1 imposed
on the background flow given above. Hence we consider problem variables in the form:

φ = φ0 + εφ1 (X, τ)

P = P0 + εP1 (X, τ)

V = V (0) (X) + εV (1) (X, τ)

ε̇∗ij = ε̇
(0)
ij (X) + εε̇

(1)
ij (X, τ)

C = C0 + εC1 (X, τ)

(13)

where the first term with index 0 represents the base-state flow of order one and the second
term with index 1 represents the perturbation of order ε caused by εφ1. We can also Taylor
expand (φ/φ0)

n and e−λ(φ−φ0) to first order in ε as{
(φ/φ0)

n = 1 + εnφ1/φ0

e−λ(φ−φ0) = 1− ελφ1

(14)

The base-state flow is
V (0) = (Y, 0, 0) , (15)

with C0 = 0. Then the first order balance of equations (9b) and (9c) become

C1 =
1

rξ + 4/3
∇ · [A∇P1] (16a)

∇P1 = ∇ ·
(
∇V (1) + (∇V (1))T

)
+ (rξ − 2/3)∇C1 − λ∇ ·

[
φ1

(
∇V (0) + (∇V (0))T

)]
(16b)

We consider porosity perturbations of the form

φ1 = exp

[
iκ ·

(
x−

∫ τ

0

V (0)dt

)
+ s (τ)

]
(17)

where the wave-vector is κ = (κx, κy, 0) = κ (sin θ, cos θ, 0). Equation (17) represents harmonic
waves moving passively in the base-state flow V (0) with a time dependent log-amplitude s.

This linearised system can be solved, as in Appendix B, to obtain the growth rate

ṡ = λ(rξ + 4/3)−1 (1− φ0) sin 2θ
〈κ,Aκ〉

1 + 〈κ,Aκ〉
. (18)

Here we use the inner product notation,

〈κ,Aκ〉 =
∑
i

∑
j

κiAijκj. (19)

For isotropic permeability, A = I, the growth rate is consistent with the instantaneous growth
rate calculated by Spiegelman [2003] for isotropic permeability and viscosity. Further, note
that if we take the limit κ→∞ the term involving A cancels and so we reduce to the isotropic
case, while in the limit κ→ 0 the growth rate is zero. Hence, growth rate depends significantly
on anisotropic permeability when κ ∼ 1.
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For a permeability matrix A of the form given in equation (12) we can calculate 〈κ,Aκ〉
explicitly as

〈κ,Aκ〉 = κ2
(

sin θ cos θ
)( α cos2 Θ + β sin2 Θ (α− β) cos Θ sin Θ

(α− β) cos Θ sin Θ α sin2 Θ + β cos2 Θ

)(
sin θ

cos θ

)
= κ2

(
α sin2(θ + Θ) + β cos2(θ + Θ)

)
(20)

Hence we are interested in the behaviour of the factor F that modifies the isotropic growth
rate, given by

F =
κ2
(
α sin2(θ + Θ) + β cos2(θ + Θ)

)
1 + κ2

(
α sin2(θ + Θ) + β cos2(θ + Θ)

) . (21)

F depends on the relative sizes of the parameters α, β and κ. Since α is less than β we have a
peak where θ + Θ is a multiple of π and troughs where θ + Θ is an odd multiple of π/2. The
shape of these peaks and troughs depends on the relative parameter sizes. Figure 2 shows the
dependence of F on these parameters. Firstly it shows that when κ is significantly greater or
smaller than 1 the θ dependence is weak and so the growth rate is similar to the isotropic case,
as observed above. Secondly, if α � β the troughs are deep whereas if α and β are both of
order 1 then the θ dependence is weak and the anisotropy doesn’t have a significant effect on
the growth rate. In the extreme case that α = 0 the troughs drop all the way down to the axis
and so perturbations at an angle θ = 90◦−Θ have a growth rate of 0. This implies that bands
would never spontaneously form perpendicular to the MPO direction.
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Figure 2: Anisotropy factor F , as a function of θ. In both cases Θ = 45◦.

4.1 Growth Rates and Low Angle Bands

In linear instability analysis, perturbations with the largest growth-rate will dominate the
porosity distribution after a finite time and so we expect to observe high porosity bands forming
at an angle, θmax, corresponding to the perturbation angle with the largest growth-rate. Since
we have shown that growth-rates depend strongly on the anisotropy for κ ∼ 1, we take κ = 1
for the current section. We consider different values of κ in Section 4.2. Figure 3 shows a plot of
growth-rate against θ for various values of the anisotropy angle Θ with α = 0.001, and β = 1.1
which demonstrates that θmax depends on Θ.

In the case that Θ = 45◦ we see two peaks of equal growth rate, one lower than 45◦ and one
higher, as demonstrated by Θ = 45◦ in Figure 3. Katz and Takei [2013] argue that although the

5



0 50 100 150 200
−6

−5

−4

−3

−2

−1

0

1

2

3

Angle, θ (deg.)

G
ro
w
th

ra
te
,
ṡ
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Figure 3: Growth-rate, ṡ, against θ for various values of anisotropy angle Θ. α = 0.01, β = 1.1

two perturbations have the same growth rate, it is the lower angle perturbation that dominates,
since the high angle band is rotated faster by the background flow until it reaches an angle at
which it decays.

Since 0 ≤ α ≤ 1, − log(α) lies in (0,∞) and is an appropriate measure of the magnitude
of permeability decrease in the x′ direction. Similarly log(β) is an appropriate measurement of
permeability increase in the y′ direction. Figure 4 gives contour plots of θmax (in degrees) for
fixed κ = 1 against − log(α) and log(β). Here, whenever there are multiple maxima, we take the
smallest choice of θmax, corresponding to bands that are rotated less quickly by the background
flow. In these plots, the lower-left corner corresponds to the isotropic case (where θmax =
45◦) while the top-right corner corresponds to the case where MPO significantly decreases the
permeability in the x′ direction and also significantly increases it in the y′ direction. Figure 4
demonstrates that θmax is furthest from 45◦ when there is strong permeability decrease in the
x′ direction but permability is relatively unchanged in the y′ direction. Figure 4a is for Θ = 45◦

and shows that, if the other anisotropy parameters are of a particular form, θmax can be lowered
to below 20◦, consistent with band angles observed in experiments. However these conditions
are fairly restrictive and Figures 4b and 4c, for Θ = 20◦ and Θ = 70◦, demonstrate that for
other anisotropy directions, θmax is not lowered to angles consistent with the experimental band
angles.

4.2 Wavenumber Dependence

At the end of Section 4 we observed that anisotropic permeability has a significant effect on
θmax when κ ∼ 1 but not for large wavenumbers (small wavelengths). This is demonstrated
well by Figure 5 which plots θmax against the logarithm of the wavelength for fixed anisotropy
parameters. This plot includes θmax ≥ 45◦ as well as the lower maximum and demonstrates
that at wavelengths smaller than a tength of a compaction-length θmax = 45◦, as in the isotropic
case.

Figure 6 shows growth rate against wavelength on a log-log scale for θ = θmax and fixed
anisotropy parameters. This figure demonstrates that growth rate is maximised at arbitrarily
small wavelengths (high κ) and so, in fact, the dominant perturbations are not affected by
anisotropic permeability. This suggests that anisotropic permeability may not be a contribut-
ing factor in low-angle band formation, however the instability of arbitrarily small wavelength
perturbations is an unsatisfactory prediction of the model and certainly isn’t observed in ex-
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Figure 4: Contours of θmax in degrees against − log(α) and log(β)
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Figure 5: θmax against log-wavelength for Θ = 45◦, α = 0.01 and β = 1.1

periments, so it is possible that some mechanism restricts the growth of these high wavenum-
ber perturbations. These may come into play in the full non-linear system at finite time or
through some regulating process not included in the model such as surface-energy or dissolu-
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tion/precipitation.
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Figure 6: Maximum growth rate against wavelength for Θ = 45◦, α = 0.01 and β = 1.1

5 Numerical Simulations

The previous analysis is linear and so does not necessarily apply to the behaviour of bands
at finite strains. To investigate the effect of anisotropic permeability in the full non-linear
model we numerically simulate a finite domain of the medium deforming under simple shear
and apply a random porosity perturbation. Result from simulations with fixed anisotropy
(α = 0.01, β = 1.1 and Θ = 45◦) were compared to the results from simulations with isotropic
permeability.

Since the analysis predicted different behaviours at different wavelength perturbations the
initial porosity distribution was chosen to vary on different length scales. However the finite
domain introduces an upper bound on these length scales. Furthermore the finite grid resolution
introduces a lower bound since growth rates of short wavelength perturbation are suppressed.
Fourier analysis was used to calculate the dominant wavelength and angle of the resulting
porosity distribution. Predicted values of θmax were calculated using Figure 5 and the dominant
Fourier wavelength.

Simulation results are shown in Table 1 for isotropic and anisotropic media deformed to a
strain of 0.25 for two different length scale perturbations. Visually the porosity distributions for
isotropic and anisotropic permeability are very similar, however the angle spectrum indicates
that anisotropy lowers the dominant band angle as predicted by the linear model. The angle was
also lowered further for the porosity pertubation that varied on a larger length scale, consistent
with the model. However the observed dominant band angle rarely corresponded exactly to
the predicted θmax. This could be due to boundary effects of the finite domain (since the linear
analysis was performed for an infinite domain) or non-linear effects not incorporated in the
analysis above. At higher strains porosity becomes close to 0 or 1 at which point the modelling
assumptions become invalid and the numerical solvers tend to stop converging.

6 Discussion

In the analysis presented above, we have demonstrated the consequences of anisotropic perme-
ability in the dynamics of a two-phase aggregate and specifically on its role in low-angle band
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Table 1: Porosity distributions and angle spectra for two simulations at a shear of γ = 0.25.
The anisotropic simulations were calculated with α = 0.01, β = 1.1 and Θ = 45◦ as in Figure 5.
Both simulations with isotropic permeability have a peak angle of 45◦. With anisotropy the peak
angles are lower. The second porosity distribution varies on a greater length scale than the first and
consequently has a lower peak angle in the Fourier spectrum. All simulations use a 400x200 grid.

formation in deformation under simple shear. We found that, at sufficiently large wavelengths,
the angle to the shear plane of the fastest growing perturbations was consistent with band
angles in experiments for a narrow range of anisotropy parameters. However this sensitivity
to model parameters is inconsistent with the robustness of low band angle in laboratory ex-
periments. Further, the analysis suggests arbitrarily short wavelength perturbations should be
most unstable and dominate the resulting porosity distributions, this is unphysical and further
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work should be done to address this problem.
In numerical simulations there was general qualitative agreement with the theory, such

as bands forming at lower angles when the porosity perturbation varies on a length scale
comparable to the compaction length. However, higher resolution simulations may be required
to obtain greater quantitative agreement. The high porosities reached in numerical simulations
are also unphysical and so a mechanism is required to prevent segregation occuring to this
degree. Surface energy effects could help to explain these inconsistencies.

It is likely that some anisotropy in permeability arises due to MPO in partially molten
rock deforming under shear. However, given the difficulty in obtaining maximal growth-rates
for perturbations at an angle of 15 − 20◦ to the shear plane, it is unlikely that anisotropic
permeability is a significant cause of low angle band formation as observed in experiments. It
would be informative to test experimentally for anisotropic permeability in partially molten
mantle rock deformed under shear, and attempt to measure the parameters α, β and Θ. New
techniques for quantifying permeability in partially molten rock as used by Miller [2013] would
make this possible.

7 Conclusion

Permeability of partially molten mantle rock is hypothesised to become anisotropic when the
medium is deformed under shear. Anisotropic permeability is incorporated into the standard
continuum model for partially molten rock and we investigate its impact on the band forming
instability observed in experiments. A linear stability analysis found that band angles were
generally lower than the 45◦ predicted in an isotropic model but that only a narrow range of
parameters led to angles lower than 20◦ as consistently observed in experiments. This suggests
this mechanism is not the driving factor in the formation of low angle bands.

Appendices

A Argument for Diagonality of Permeability Tensor

Consider equation (1c) for a medium with uniform porosity, φ = φ0, and neglect gravity:

φ0

(
vS − vL

)
=
K0

ηL
A∇pL. (22)

With respect to the x′ and y′ axes this becomes

q =
K0

φ0ηL

(
α γ1
γ2 β

)
∇pL, (23)

where q = vS − vL is segregation velocity. For a unit pressure gradient, ∇pL = (0, 1), applied
in the y′-direction we have segregation

q =
K0

φ0ηL
(γ1, β) (24)

with an x′-component, qx′ , proportional to γ1.
If we reflect in an axis parallel to the y′-direction, as shown in Figure 7, the pressure gradient

is unchanged and the segregation becomes

q =
K0

φ0ηL
(−γ1, β) (25)
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with an x′-component, qx′ proportional to −γ1. However, the melt-pocket structure in Fig-
ure 1 is unchanged and so the permeability tensor should not change. Hence the segregation
calculated by (23) is

q =
K0

φ0ηL
(γ1, β). (26)

So we have γ1 = −γ1 = 0, and by a similar argument γ2 = 0.

Figure 7: Reflection of MPO in y′–axis

B Solving the Linearised Equations for Growth Rate ṡ

Since we have linearised the governing system, we are able to relate the other variables to φ1

via
V (1) = Ṽ φ1, P1 = P̃ φ1. (27)

From the order ε balance in equation (9a) we have

∂φ1

∂τ
= (1− φ0) Ṽ · ∇φ1 −��

�*0
φ1C0 − V (0) · ∇φ1. (28)

From equation (17) we have

∇φ1 = iκφ1, (29a)

∂φ1

∂τ
=
(
−iκ · V (0) (τ) + ṡ

)
φ1. (29b)

which, when substituted into equation (28) gives an equation for the growth rate

ṡ = (1− φ0) iκ · Ṽ = (1− φ0) C1/φ1. (30)

Substituting V (0) = (Y, 0), V (1) = Ṽ φ1 and P1 = P̃ φ1 into the x and y components of equation
(16b) gives 

P̃ κx = i
[
(rξ + 4/3)κ2xṼx + (rξ + 1/3)κxκyṼy + κ2yṼx

]
− λκy,

P̃ κy = i
[
(rξ + 4/3)κ2yṼy + (rξ + 1/3)κxκyṼx + κ2xṼy

]
− λκx,

(31)
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which can be combined using κ2x + κ2y = κ2 (κx times first equation plus κy times second) to
obtain

P̃ = i (rξ + 4/3)
(
κxṼx + κyṼy

)
− 2

κxκy
κ2

λ

= (rξ + 4/3) C1/φ1 − λ sin 2θ. (32)

By substituting this equation into equation (16a) we obtain

C1 =
1

rξ + 4/3
∇ ·
(
iP̃Aκφ1

)
= − P̃

rξ + 4/3
〈κ,Aκ〉φ1

= −〈κ,Aκ〉 C1 +
λ sin 2θ

rξ + 4/3
〈κ,Aκ〉φ1. (33)

Hence, using (30), we obtain the growth rate

ṡ = λ(rξ + 4/3)−1 (1− φ0) sin 2θ
〈κ,Aκ〉

1 + 〈κ,Aκ〉
. (34)
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