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5 Introduction

Abstract

Global observations of mid-ocean ridge (MOR) bathymetry reveal a correlation

between changes in the axial depth of MOR segments across ridge offsets and the

direction of ridge migration. Segments leading with respect to the direction of ridge

migration typically have a shallower bathymetry than the trailing segments. 2D nu-

merical modelling of asthenospheric flow and melting predicts that ridge migration

modifies the sub-ridge asthenospheric flow pattern. The modification of the flow

pattern induces an asymmetry in melt production rates either side of the ridge axis.

Analysis of the 2D model shows that differences in the focusing of melt from regions

adjacent to ridge offsets can account for the observed variation in axial depth. How-

ever, the 2D model cannot properly simulate mantle dynamics and melting rate near

ridge offsets. To better understand the dynamical interaction between plate tectonics

and mantle convection, I have used a 3D numerical model to investigate the scale

of asthenospheric flow and melting beneath migrating MOR. By coupling models of

3D melt focusing to my simulations, I generate predictions of axial depth changes

across ridge offsets and of along axis variations in crustal thickness. Results of 3D

simulations suggest that the behaviour of asthenospheric flow and melting is highly

sensitive to the shape of the base of the lithosphere.

1 Introduction

At over 60,000 km long, the mid-ocean ridge (MOR) system is perhaps the most striking

geological feature on Earth. Found only at constructive plate boundaries, MORs account

for more than 60% by volume of the total annual flux of magma from the mantle to the

crust. Magma generated at MORs is supplied to spreading segments that are offset by

transform faults and smaller non-transform discontinuities. The morphology of ridge seg-

ments is thought to be controlled by variation in melt supply from the mantle. Although

the variation in melt supply, and hence ridge segment morphology, has been attributed to

the dynamics of sub-ridge mantle, the exact cause of the variation remains poorly under-
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stood (??).

Global observations of MOR bathymetry reveal a correlation between differences in ax-

ial depth across ridge segment offsets and the direction of ridge migration in the hotspot

reference frame (?). Segments leading with respect to the direction of ridge migration

typically have a shallower bathymetry than the adjacent trailing segment (Figure ??). The

ubiquity of this observation and its systematic connection with plate kinematics suggests

an explanation might be related to plate induced mantle dynamics.

Kinematic models of plate driven mantle dynamics beneath MORs predict upwelling and

melting to be symmetrical about non-migrating ridge segments, provided that both plates

spread apart from the ridge at equal rates. In constrast, the same models predict signif-

icant asymmetry in upwelling and melting beneath a ridge migrating over the top of the

asthenosphere. In the case of ridge migration, upwelling is more rapid and melting is

greater beneath the leading plate (??).

Seismic and seafloor observations suggest that crustal formation occurs within a narrow

zone (1-2 km) either side of the segment. To facilitate this, melts must be strongly focused

to the ridge. In the case of a segmented spreading centre, focusing of melt can occur from

the upwelling zone beneath the segment. Alternatively, melt may be focused from a re-

gion on the opposite side of the discontinuity to the ridge. These regions are denoted by

Σ+ and Σ− for the leading and trailing segments respectively. This conceptual 3D melt

focusing model is illustrated schematically in Figure (??).

In the absence of ridge migration melt would be focused from Σ+ and Σ− with equal

efficiency because the melting rate is symmetrical about both ridge segments. If ridge

migration occurs, the amount of melt focused from Σ+ to the leading ridge segment is
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Figure 1: Schematic diagram showing a leading and trailing ridge segment separated by a
discontinuity. Double headed red arrow indicates the direction of ridge migration. Single
headed red arrows show the direction of lithosphere motion. The leading plate is coloured
blue. L and T highlight the leading and trailing ridge segments respectively, which are
surrounded by a focusing region (dashed lines). The focusing regions are divided into two
sub-regions, one sub-region lies either side of the ridge axis and the other (hashed) lies
on the opposite side of the discontinuity to the ridge. Hashed regions are labelled Σ+ and
Σ− for the leading and trailing segments respectively. Black arrows depict hypothetical
paths of melt focusing beneath the lithosphere. Modified from ?.

augmented and the amount of melt focused from Σ− is diminished. This is caused by an

asymmetry in melting rate about both ridge segments. Noting that all MORs are currently

migrating relative to the hotspot reference frame (?), ? use this mechanism to explain the

correlation between axial depth asymmetry and direction of ridge migration.

? quantify the conceptual model of ? with a 2D numerical model of asthenospheric

flow and melting that considers non-Newtonian pressure (P ), temperature (T ) and strain
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rate dependent mantle viscosity (η). They show that plate induced mantle dynamics is a

plausible explanation for the observed morphological changes between MOR segments.

Figures (??a,b) demonstrate that the 2D model predicts that mantle flow is symmetrical

about the ridge axis in the absence of ridge migration, but asymmetrical about the axis

when ridge migration occurs. Figure (??c) shows the component of mantle flow induced

by ridge migration. This perturbed flow field is the difference between the mantle flow

field in the case of ridge migration and the flow field in the case of no ridge migration.

In the absence of lithospheric plates, the perturbed flow would be simple shear with no

component of vertical velocity. However, the curvature of the base of the lithosphere

causes the perturbed flow to upwell under the leading plate and downwell beneath the

trailing plate. By considering the melting rate to be a function of the vertical velocity

[Section ??], the perturbed flow augments melt production beneath the leading plate and

diminishes it beneath the trailing plate.

By coupling a simple parametric model of 3D melt focusing to the 2D model ? gener-

ate predictions of axial depth asymmetries across offsets between MOR segments. They

define the focusing regions Σ+ and Σ− to be rectangular, of a size based on the character-

istic distance (h) over which melt is focused to the ridge. Σ+ and Σ− extend h and 2h in

the along and cross axis directions respectively. By fitting model results to observational

data, ? estimate the focusing distance (h) to be 24 km. This contrasts with more recent

work based on dynamical and thermodynamical calculations that suggest h ∼ 60 km (?).

Constraints placed on the scale of melt focusing and upwelling geometry by the 2D model

can be improved by computing 3D flow and temperature fields near ridge discontinuities.

Several previous studies have addressed the three dimensional behaviour of mantle dy-

namics near ridge discontinuities. ? studied the development of multi-scale mantle flow
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in a layered viscous mantle beneath mid-ocean ridge segments separated by a transform

fault. Mantle flow beneath a triple junction in a mantle of variable viscosity was consid-

ered by ?. This finite element model also investigated the effects of differential motion of

the triple junction with respect to the underlying mantle. Most recently, analytical solu-

tions to plate driven flow in an incompressible, layered, viscous mantle beneath a generic

ridge-transform-ridge plate boundary were calculated by ?.

In this thesis I use a numerical model to extend the study of ? into three dimensions. The

model differs from those used in previous studies by employing the finite volume method

to numerically solve for incompressible non-Newtonian plate driven mantle flow. With

this model, I seek to determine whether lithosphere induced mantle dynamics can explain

the global observations of variation in ridge bathymetry. By better understanding the scale

of melt focusing and upwelling geometry, I aim to improve the constraints placed on the

these quantities by the 2D model of ?. The governing equations are discussed in Section

??. This is accompanied by an overview of the compuational tools employed, the model

setup and solution method. Melt focusing models are described in Section ??, followed by

the results generated by the model (Section ??). The thesis is concluded with a discussion

of the major findings.

2 Simulation of Mantle Dynamics

2.1 Governing Equations

A full description of physical dynamics in the sub-ridge mantle concerns the behaviour of

the solid crystalline mantle and the liquid magma phase present within the solidus. In the

limit of a rigid crystalline mantle, the governing equations reduce to Darcy’s law for fluid

flow in a porous medium. In the absence of a fluid phase, the equations reduce to a com-
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Figure 2: (a) Solid mantle flow pattern (white arrows) in the absence of ridge migration.
Half spreading rate = 4 cm yr−1. Background shows viscosity (Pa s−1). (b) Pattern of
solid mantle flow when rate of ridge migration = half spreading rate = 4 cm yr−1. (c)
Component of flow induced by ridge migration. This is calculated by subtracting the flow
pattern in (a) from that in (b). Visosity model employed is P , T and strain rate dependent.

plete description of solid mantle convection. ? provides a widely accepted formulation of

the behaviour of two phase mantle flow by considering the conservation of mass, momen-

tum and energy in the physical system. A numerical solution to such a set of equations is

known here as a simulation. High computational computational cost prohibits large scale,

high resolution simulations of two-phase mantle dynamics. The problem is made more

tractable by solving the equations governing the dynamics of solid phase. By coupling

a model of melting and melt migration to the simulation results, I significantly reduce to

computational load and isolate important dynamical issues of the system.

The following set of coupled partial differential equations fully describe the dynamics of

the solid phase:

∇·v = 0 (1)
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∇P = ∇ ·
[
η
(
∇v +∇vT

)]
(2)

v · ∇θ = κ∇2θ. (3)

Here, v is the three dimensional velocity of the solid mantle, P is dynamic pressure, η is

the mantle viscosity, κ is the thermal diffusivity and θ is the mantle potential temperature.

Equation (??) stipulates that mass is conserved. Equation (??) governs the conservation

of momentum of incompressible solid mantle in the limit of an infinitely small Reynolds

number (Stoke’s flow). Equation (??) is a statement of energy conservation and requires

that, at a steady state, advection and diffusion of heat are in balance. A full derivation of

these equations is given in Appendix ??.

Mantle deformation occurs through dislocation and diffusion creep. Diffusion creep is

the dominant deformation mechanism at very low stress levels. When crystal grains are

subjected to stress, atoms diffuse through the crystal interior. Consequently, crystal grains

deform giving rise to rock strain. Newtonian fluids deform solely by diffusion creep. Dis-

location creep can give rise to non-Newtonian fluid behaviour. Dislocations are imperfec-

tions in the crystal lattice structure. Examples of dislocation creep include the inclusion

of extra planes of atoms in the lattice structure and out of plane deformation of the crystal

lattice. Both of these dislocation types contribute to the development of stress within the

crystal lattice. Stress development forces dislocations to propagate through the crystal lat-

tices by slip and, when diffusion creep operates, climb. Fluids that deform by dislocation

creep can behave in a non-Newtonian manner.

Dislocation creep creates a preferred orientation of minerals. Siesmic studies of the sub-

ridge asthenosphere (?,?,?) suggest preferred alignment of minerals can create a strong

seismic anisotropy, thus demonstrating the importance of dislocation creep in the upper

mantle. Dislocation creep is the domainant deformation mechanism in the upper man-

tle (?). Despite its importance, it is included in few numerical models.The viscosity (η)
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is given by the harmonic mean of contibutions from diffusion creep and dislocation creep.

η =

(
1

ηdifn
+

1

ηdisl

)−1

(4)

where

ηdifn = Adifnexp
(
E∗difn + PV ∗difn

RT

)
(5)

ηdisl = Adisl exp
(
E∗disl + PV ∗disl

nRT

)
ε̇II

(1−n)/n. (6)

A is a material parameter, E∗ is activation energy, V ∗ is activation volume, R is the gas

constant and n is the power law exponent (?, ?).

I aim to use the numerical model described in this thesis to isolate and investigate fun-

damental, global aspects of the mantle beneath migrating MORs, rather than simulate

processes at specific geographical locations. For this reason, I prescribe simulations with

realistic but hypothetical rates of ridge migration, half spreading rates and offsets. ?

showed that the mean ration of the ridge-perpendicular migration rate (Ur) to half spread-

ing rate (U◦) is 0.95 for medium and fast spreading ridges (U◦ > 3 cm yr−1). For the

purpose of these simulations, I use the approximation Ur = U◦.

2.2 Discretisation

The governing equations are discretised onto a staggered mesh using a finite volume ap-

proach (?) (Figure ??). In this method, the simulation domain is divided into uniform

cells, or control volumes (Ωijk) where i, j,and k are the indices in the x, y and z direc-

tions respectively. x is aligned perpendicular to the ridge segments, y is aligned parallel

to the ridge segments and z is aligned with the depth dimension. Temperature, pressure

and viscosity are placed at the centre of each control volume, whilst the x, y and z com-
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Figure 3: Control volume and staggered mesh. Each control volume has five degrees of
freedom, u, v, w, P, T and their corresponding residuals.

ponents of the total velocity are located at the centre of cell faces normal to the direction

of the velocity components. Spatial staggering of the velocity components allow the non-

divergence of the flow field to be retained easily. The discretisation of the continuity

equation (Equation ??) is shown below.

∫
V

∇ · v dV∫
V

dV
= P r

ijk

∫
∂V

v · n̂ dS∫
V

dV
= P r

ijk

(uijk − ui−1jk) ∆y∆z + (vijk − vij−1k) ∆x∆z + (wijk − wijk−1) ∆x∆y

∆x∆y∆z
= P r

ijk

uijk − ui−1jk

∆x
+
vijk − vij−1k

∆y
+
wijk − wijk−1

∆z
= P r

ijk (7)
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Here, u, v and w are the velocities in the x, y and z directions respectively. The cell

dimensions are ∆x, ∆y and ∆z. P r
ijk is the residual of the continuity equation in cell

Ωijk and corresponds to the pressure variable, despite the absence of a pressure term in

the left hand side of Equation (??). u, v and w are obtained by discretising Equation (??).

Considering the x, y and z components separately


∂P
∂x
∂P
∂y
∂P
∂z

 =


∂
∂x
∂
∂y
∂
∂z

 ·
η


∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

+


∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z



 . (8)

− Pi+1jk − Pijk
∆x

+
σxxi+1jk − σxxijk

∆x
+
σxyijk − σ

xy
ij−1k

∆y
+
σxzijk − σxzijk−1

∆z
= urijk (9)

− Pij+1k − Pijk
∆y

+
σxyijk − σ

xy
ij−1k

∆x
+
σyyij+1k − σ

yy
ijk

∆y
+
σyzijk − σ

yz
ijk−1

∆z
= vrijk (10)

− Pijk+1 − Pijk
∆z

+
σxzijk − σxzi−1jk

∆x
+
σyzijk − σ

yy
ij−1k

∆y
+
σzzijk+1 − σzzijk

∆z
= wrijk (11)

where

σxxijk = 2ηijk
uijk − ui−1jk

∆x
(12)

σyyijk = 2ηijk
vijk − vij−1k

∆y
(13)

σzzijk = 2ηijk
wijk − wijk−1

∆z
(14)

σxyijk = ηxyijk

(
uij+1k − uijk

∆y
+
vi+1jk − vijk

∆x

)
(15)

σxzijk = ηxzijk

(
uijk+1 − uijk

∆z
+
wi+1jk − wijk

∆x

)
(16)

σyzijk = ηyzijk

(
vijk+1 − vijk

∆z
+
wij+1k − wijk

∆y

)
. (17)

For each control volume, urijk, v
r
ijk and wrijk are the u, v and w velocity residuals in cell

Ωijk respectively and σ is stress. Linear interpolation has been used to define the viscosi-

ties ηxyijk, η
xz
ijk and ηyzijk on the control volume’s edges (Figure ??). The descretisation is
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discussed more fully in ?. To more properly simulate advection and diffusion of heat, an

upwind scheme is employed in which the stencil is biased in the direction of heat trans-

port. ? discretises the advection term in Equation (??) using the Fromm scheme described

by ?. Central differencing techniques are employed to discretise the diffusion term.

2.3 Boundary Conditions

The governing equations are solved in a reference frame fixed to the migrating ridge. To

solve Equations (?? - ??), physically motivated boundary conditions must be specified on

u, v, w, P and T . The complete set of boundary conditions is given in Table (1). On the

top boundary (corresponding to the top of the lithosphere), T is set to zero and u, v, w

are set such that they describe the plate motion. The bottom boundary corresponds to the

bottom of the asthenosphere. The dimensionless T is set equal to the dimensionless θ, and

w is set so that there is constant inflow of solid mantle. Because the governing equations

are solved in a reference frame fixed to the migrating ridge, the horizontal velocity is set

equal to the ridge migration rate Ur,. Since the boundaries perpendicular to the ridge

segments are not physical, frictional boundaries, the flow is prescribed to slip smoothly

along them. The fact that a staggered mesh is used sometimes results in a boundary

condition having no influence on the interior of the domain.

2.4 Computational Tools

The zone of melting beneath a mid-ocean ridge may extend laterally for hundreds of kilo-

metres under each plate and down to depths in excess of 60 kilometres A successful study

of sub-ridge asthenospheric flow requires 3D simulations to be run in a large physical

domain at high resolution. In such a large domain, solutions to the governing system of

coupled differential equations exceeds the capabilities of general-purpose high-level lan-

guages such as MATLAB and desktop computers. Multiprocessor (parallel) computing
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systems are needed to handle these large simulations. The governing equations are solved

by a program written in C that implements the Portable, Extensional Toolkit for Scientific

Computing (PETSc). PETSc is an advanced numerical software library that contains a

range of inherently parallel data structures, preconditioners and solvers with a constant

user interface to ease the development and running of complex parallel simulations.

Simulation success depends heavily on effective communication between different pro-

cessors. Communication has been facilitated through the development of the Message

Passing Interface (MPI), which provides a standard means of efficient inter-processor

communication for parallel computers. For successful implementation of MPI, every as-

pect of parallelism and processes must be managed by the programmer. PETSc aims to

remove direct use of MPI, leaving the programmer to focus on the overall computation

and detailed physics of the simulation. Parallelisation provides an additional challenge

in reaching a numerical solution with successful implementation of the boundary con-

ditions. Inter-processor communication is needed so that all processes contribute to a

solution that satisfies the boundary conditions. Inter-processor communication is facili-

tated through the use of ghost points (Figure ??) - an additional line of cells surrounding

cells on a processor that contain information about the neighbouring processes.

Solution method

By assembling the complete set of degrees of freedom into a vector x̃ of length N = 5Nc

where Nc is the total number of grid cells, the nonlinear set of discretised equations can

be represented as

A (x̃) = 0. (18)
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Figure 4: Ghost point principles. The black dashed lines show how the mesh is divided
between the different processors. Orange points represent the portion of the mesh held
on one of the processors. The green points represent ghost points. These ghost points
are held on the same processor as the orange points, but contain information about the
neighbouring processes to ensure continuity of the solution across processors.

In practice it is difficult to find a vector x̃ such that A (x̃) is exactly equal to a zero vector.

Instead, an approximate solution is iterated to such that

||A (x̃) || = ||r̃|| < tol (19)

where || · || is the vector norm, r̃ is a vector of length N containing the residuals of A (x̃)

and tol is a tolerance of the order 10−4. The isoviscous case is linear and can be solved

analytically by direct inversion. However, models with variable viscosity require use of

an iterative method. For example

for n = 1, 2...

r̃n = A (x̃n)
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x̃n+1 = x̃n + f (r̃n) .

where n represents the iteration. Given a good starting guess x̃∗ to the solution x̃0, the

Newton-Raphson method provides one way with which a solution can be obtained. If x̃∗

differs from the solution to x̃0 by an amount δx̃, i.e.

x̃∗ = x̃0 + δx̃

A (x̃∗) can be expanded in a Taylor series about x̃0

A (x̃∗) = A (x̃0 + δx̃) = A (x̃0) + δx̃ · ∇ [A (x̃0)] + . . . (20)

Equation (??) is then reduced and solved linearly to obtain δx̃

δx̃ ≈ A (x̃∗) · [∇A (x̃0)]−1 . (21)

This is implemented by the iterative method as shown below:

for n = 1, 2... {

/* Evaluate residual */

r̃n = A (x̃n)

if n = 2, 3...{

/*Check for convergence */

r̃n < r̃n−1

}

/* Compute Jacobian */

Jnij =
∂rni
∂xnj

/* Linear solve for δx̃ */



Melting and Melt Migration 20

Jnδx̃ = r̃n

/* Correct starting guess */

x̃n+1 = x̃n − δx̃

}

This process is repeated until ||r̃|| < tol. The highly nonlinear dependence of viscosity

on T , P and strain rate prevents Newton’s method converging to a solution unless a good

starting guess is used. To convergence and provide a good initial guess, a continuation

method is adopted. In this method the viscosity is raised to a power between zero and

one, η → ηα (?). α = 0 corresponds to constant viscosity and α = 1 corresponds to the

full variation in viscosity. In this way the variation in viscosity is forced to go from zero

to the full variation over a set of iterations of the nonlinear solve.

3 Melting and Melt Migration

This study concerns the scale and distribution of upwelling and melting in the sub-ridge

asthenosphere. Computational constraints preclude calculation of compressible two-phase

flow and thermodynamically governed melting in large scale three dimensional calcula-

tions. Therefore I assume that Equations (??-??) isolate the important aspects of up-

welling and melting behaviour. Solutions to the governing equations are processed with a

simple melting model stating that the melting rate (Γ) in cell Ωijk is given by

Γijk = ρmWijk
dF

dz

∣∣∣∣
S

(22)

where W is vertical velocity, dF/dz is the adiabatic productivity and S is entropy. In a

parameterisation study of mantle melting, ? show that the melting rate for a mantle po-

tential temperature of 1300◦C is approximately constant at 0.2%km−1. As a consequence,



21 Melting and Melt Migration

Γ is a function of W only. The melting region is defined as the zone in which T is greater

than the temperature of the solidus (Tsolidus) and |W | > 0. The change in Tsolidus with

depth caused by adiabatic decompression is given by Tsolidus = A1 +A2P −A3P
2 where

A1 = 1085.7◦C, A2 = 132.9◦C GPa−1 and A3 = −5.1◦C GPa−2.

The intricacies of the melt focusing process are poorly understood. ? model magma mi-

gration as porous flow in which viscous interaction between the melt and solid matrix

resists magma flow. They show that the velocity of the solid mantle is at least two orders

of magnitude less than the magma migration velocity, suggesting that advection of melt

by the porous solid mantle is negligible. ? use this assumption in a model of melt fo-

cusing. They describe how a balance of compaction and viscous forces dilates the porous

mantle at the top of the melting region to form a high porosity channel. The channel is

overlain by impermeable mantle. Melt upwells buoyantly to the channel where it is driven

towards a ridge segment by the along channel component of gravity.

Based on the model of ? I have developed an algorithm to calculate the effect of 3D melt

focusing for each simulation. The algorithm (code provided in Appendix ??), assumes

that melt upwells buoyantly to a high porosity channel coincident with the upper surface of

the melting region. Melts migrate along streamlines (s̃) that are tangential to the steepest

local slope of the upper surface of the melting region, i.e.

ṽ × ds̃ = 0 (23)

where

ṽ =
∂m

∂x
+
∂m

∂y
. (24)

Here m is the depth to the upper surface of the melting region and ṽ is the steepest

local slope of this surface. Streamlines are calculated for each grid cell in m within one
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Figure 5: Schematic diagrams showing the principles of the different focusing algorithms.
Red bars and lines show the positions of the ridge segments and transform faults. Black
solid lines outline Σ+ and Σ− and black dashed lines show the along-axis region from
which melt is drawn. L: leading ridge segment, T: trailing ridge segment. Black arrow
shows direction of ridge migration. (a): streamline focusing algorithm. Blue streamlines
show the path melt takes as it is focused to the ridge. Here the focusing distance (h) is
greater than the offset but the topography of the melting region prevents Σ+ and Σ− from
overlapping. (b): Rectangular focusing algorithm. The focusing distance, h is equal to
half of the offset. No overlap between Σ+ and Σ− occurs. (c) Nearest focusing algorithm.
Again, h is half of the offset length.

focusing distance h of all ridge segments. If a streamline crosses into a narrow (1 km)

zone around each ridge segment, all melt present at the starting point of the streamline is

focused to the ridge segment. Hence, this narrow zone is termed the crustal generation

region. ? notes that the efficiency of melt extraction is greater than 70%. For the purpose

of this investigation, which concerns the scale of asthenospheric flow and melting, it

is reasonable to assume complete extraction of melt from the mantle with the focusing

regions. Assuming there is no redistribution of melt within the crustal generation region,

this algorithm calculates (i) the difference in amount of melt delivered from Σ+ and Σ−

and (ii) the along axis variation of crustal thickness. This algorithm is known as the

Streamline focusing algorithm and is illustrated schematically in Figure (??).

3D simulations are approximately 25000 times more computationally expensive than

analogous 2D simulations. It would be advantageous to more accurately simulate the
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effects of 3D melt focusing using the 2D model. Two further algorithms were developed

to test simple geometrical models of 3D melt focusing against the Streamline focusing

algorithm. Both models are similar to that used in ?. The algorithms only assess the

difference in amount of melt focused to the ridge from Σ+ and Σ−. The first algorithm

involves integrating Γ first over depth to give the vertically integrated melting rate ΓI (i.e.

ΓI =
∫ Z

0
Γ dz) and then over Σ+ and Σ−. The regions Σ+ and Σ− have dimensions 2h

and h in the cross and along axis directions respectively. This method is comparable to the

simple 3D focusing model used by ? and is known as the Rectangular focusing algorithm.

The second method instead approximates the shape of the focusing region to be a half-

circle with radius h, as shown in Figure (??) and is known as the Half-Circle focusing

algorithm. The Rectangular and Half-Circle focusing algorithms assume all melt within

Σ+ is focused to the leading ridge segment, and all melt within Σ− is focused to the trail-

ing segment. However, similar to the focusing model used by ?, the physical feasibility of

the algorithms breaks down at offset lengths less than h because Σ+ and Σ− are allowed

to overlap on to the adjacent ridge segments.

4 Results

Figure (??) shows that ridge migration produces asymmetry in the 3D melting rate sim-

ulations. The peak ΓI occurs at the ridge axis, immediately under which |W | peaks at

all depths. The highest upwelling rates are of similar magnitude to the half spreading

rate. Without ridge migration, |W | and |ΓI|decay away symmetrically either side of the

ridge. When Ur = U0, the distance over which |W | and |ΓI| decay to zero increases with

spreading rate. However, |W | and |ΓI| decay more slowly on the leading side of the ridge

causing simulations to show a pronounced cross axis asymmetry. Comparing the amount

of melt generated on the leading side to the trailing side gives a measure of asymmetry.
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Asymmetry varies from 16% when Ur = U◦ = 1cm yr−1, offset = 10 km to 38% when

Ur = U◦ = 6cm yr−1, offset = 80 km.

Figure (??) shows that the focusing sub-regions Σ+ and Σ− can be considered in 3D and

2D. In 3D, Σ+ and Σ− would be volumes, bounded on their upper and lower surfaces by

the melting region and controlled laterally by the shape of the melting region and the pre-

scribed focusing distance. However, Figure (??b) shows a more simple 2D representation

of the focusing sub-regions. The outline of Σ+ and Σ− is defined by the zone on the upper

surface of the melting region from which melt is focused to the ridge segment.

4.1 Morphological Asymmetry

Figure (??) shows how the morphological asymmetry (the difference in axial depth across

an offset) predicted by 2D and 3D simulations varies as a function of offset. Assuming

that melt focused from Σ+ and Σ− is distributed evenly over the first 1 km of the ridge

segments, the curves in Figure (??) are obtained using

∆H =

∫
Σ+

ΓI dA−
∫

Σ−
ΓI dA

2 ρc Uo
(25)

where

ΓI =

∫ Z

0

Γ dz (26)

Here, Γ is the melting rate (kg m−3 yr−1), ΓI is the vertically integrated melting rate

(kg m−2 yr−1), ρc is the density of the oceanic crust. Assuming ridge topography is ap-

proximately isostatically balanced and a crustal density of 2900 kg m−3, the topographic

asymmetry ∆d = 0.17∆H (?).

Result from 3D simulations presented in Figure (??) have been obtained using a focusing
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Figure 6: Example output from a 3D simulation with Ur = U◦ = 4cm yr−1. Offset = 80
km. (a) shows a 3D image of the upwelling geometry beneath the ridge system denoted
by magenta lines. The ridge is migrating to the left. Red, green and yellow surfaces show
constant upwelling rates of 1, 2 and 2.75 cm yr−1 respectively. Upwelling is strongly
asymmetrical about the ridge axis. Wire mesh marks the base of the lithosphere, defined
by the locus of the maximum rate of change in viscosity in the z-direction. Back wall
shows a 2D slice taken across the trailing segment through the temperature field. Dark
red represents the mantle potential temperature (1300◦C) and dark blue indicates 0◦C. (b)
Map of the vertically integrated melting rate, ΓI (i.e. ΓI =

∫ Z
0

Γ dz). White lines show
location of the ridge segments, transform fault, Σ+ (furthest left) and Σ− (furthest right).
The vertically integrated melting rate shows the amount of melt beneath any point on the
surface of the solidus that can be focused to a ridge segment.

distance (h) of 55 km, whilst 2D simulations have been processed with h =24 km. ? use

h = 24 km and asthenospheric depth of 670 km to achieve a best fit between 2D model re-

sults and observational data, although the amplitude of their results scales inversely with

asthenospheric depth. The asthenospheric depth is restricted to 100 km, because large

scale, high resolution simulations with domain depths in excess of 100 km become too

computationally expensive. Assuming that the inverse scaling relationship observed by ?
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Figure 7: Simulation results of asymmetry as a function of offset. Curves show the pre-
dicted difference in axial depth ∆d as a function of offset for a range of spreading rates
and offsets. Solid curves show results of 3D simulations, and dotted curves show re-
sults from analogous 2D simulations. Each open circle represents one 3D simulation. 3D
simulations have been processed using the Streamline focusing algorithm and a focusing
distance of 55 km. 2D simulations are processed using a focusing distance of 24 km,
which ? use to achieve a best ’by-eye’ fit between their simulation output and real data.
The grid resolution is 3 km. The asthenospheric depth for all simulations is set to 99 km.

remains pertinent to the 3D case, h is estimated for the 3D model by comparing morpho-

logical asymmetry curves from analogous 2D and 3D simulations. 3D simulation results

best fit 2D results (use h = 24 km) when h = 55 km.

The 2D and 3D results shown in Figure (??) show broadly similar trends. However,

it is clear that significant differences exist between the 2D and 3D system. 2D simu-

lations predict an increase in morphological asymmetry (∆d) with offset from zero to
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a peak value. The peak value increases slightly with spreading rate from 40 km when

Ur = U0 = 1 cm yr−1 to 50 km when Ur = U0 = 6 cm yr−1. After the peak value has

been reached, ∆d decreases with further increase in offset such that the curves in Figure

(??) are asymmetrical about their peak. ∆d increases with spreading rate (at decreasing

rate) at all offsets.

WhenUr = U0 = 1 and 2 cm yr−1, 3D simulations predict that morphological asymmetry

(∆d) increases with offset up to a peak value. In these cases, ∆d decreases with further

increase in offset after the peak value has been reached. The curves for simulations with

Ur = U0 = 1 and 2 cm yr−1 are asymmetrical about their peak. Simulations for Ur =

U0 = 4 cm yr−1 and Ur = U0 = 6 cm yr−1 do not show a peak value. Instead they

show an increase in morphological asymmetry with offset with asymmetry for all cases

simulated, although the slope of the results decreases as offset increases. In contrast to the

results from 2D simulations, the values of morphological asymmetry for 3D simulations

with Ur = U0 = 4 cm yr−1 and Ur = U0 = 6 cm yr−1 show a close fit.

Figure (??) shows the relative behaviour of the different melt focusing algorithms when

h = 55 km. Results generated by the 2D model using h = 24 km have been included for

comparison. The focusing distance used to process the 2D results has been obtained by fit-

ting model results to observed data. Recent dynamical and thermodynamical calculations

(?) suggest that h ∼ 60 km. This closely agrees with the focusing distance of 55 km that

best fits 3D simulation results to reference results generated by the 2D model. Of the three

focusing algorithms used to process results from 3D simulations, results returned by the

Streamline algorithm fit closest to the 2D predictions of morphological asymmetry. At all

offsets, the morphological asymmetries predicted by the Rectangular and Half-Circle al-

gorithms are more than double those predicted by the Streamline algorithm. These results

do not share a close fit with the 2D reference results. Owing to this fact, the Streamline

algorithm offers a better simulation of 3D melt focusing than the Rectangular or Half-
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Figure 8: Comparison of the behaviour of the different focusing algorithms. 3D simula-
tions have Ur = U0 = 1 cm yr−1. Domain depth is 99 km. The focusing distance (h) is 55
km for all 3D results presented here. 2D curve is produced from a completely analogous
simulation, but is processed using h = 24 km.
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Circle methods.

4.2 Variation in Crustal Thickness

Figure (??) shows profiles of crustal thickness predicted by analysing 3D simulation re-

sults with the Streamline algorithm. All profiles show a region of very thin crust close to

the transform fault. With increasing distance from the transform fault in the along axis

direction, the crustal thickness peaks before decaying to a constant thickness. The dis-

tance between the transform fault and peak crustal thickness decreases with increasing

spreading rate. Similarly, the crustal thickness at large distances from the transform fault

scales inversely with spreading rate. Again, as in Figure (??), results from simulations

with Ur = U0 = 4 cm yr−1 and Ur = U0 = 6 cm yr−1 share a close fit.

The Streamline algorithm predicts the average crustal thickness to be 3.4 km. However,

the real oceanic crust has an average thickness of 7 ± 1 km. Further discrepancies exist

between the predicted crustal thickness (Figure ??) and real data. ? show that the thick-

ness of the oceanic crust does not vary with spreading rate and full spreading rates greater

than 3 cm yr−1. When the full spreading rate is less than 3 cm yr−1, conduction of heat

from the melting region causes crustal thickness to decrease with decreasing spreading

rate. ? note that the oceanic crust thins towards transform faults, as shown in Figure (??).

However, observational data suggest that the oceanic crust only thins to approximately 4

km, not < 1 km as predicted.

5 Geometry and Scale of Melting and Upwelling

The simulation results can be understood by considering the component of mantle flow

induced by ridge migration. Figure (??c) shows that the curvature of the base of the
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Figure 9: Profiles of along axis crustal thickness generated by the Streamline algorithm.
Profiles for the leading ridge segment are plotted on the left of each panel (distance along
axis < 0 km). All crustal thickness profiles have been stacked into the same plane.

lithosphere causes the perturbed flow to upwell beneath the leading plate and downwell

beneath the trailing plate. In this thesis I define the base of the lithosphere to be where the

rate of change of viscosity with depth reaches a maximum. The perturbed flow causes all

asymmetry in melting rate and, hence, axial depth.
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5.1 Peak Morphological Asymmetry

All 2D and some 3D simulation results presented in Figure (??) show that the morpholog-

ical asymmetry will peak at some offset. Equation (??) shows that the vertical component

of velocity of the perturbed flow (W ′) induces a perturbation in the melting rate (Γ′), i.e.

Γ′ ∝ W ′. The offset at which the difference in Γ′ between the regions Σ+ and Σ− is

maximum corresponds to the position of peak morphological asymmetry.

Figure (??a) shows surfaces of maximum |W ′| at all depths greater than 20 km. The sur-

faces of maximum |W ′| are known as the extremal surfaces. Owing to Equation (??), the

location of maximum Γ′ corresponds to the position of the extremal surfaces within the

melting region. The maximum difference in perturbed melting rate (Γ′), and hence peak

morphological asymmetry (Figure ??) occurs when the extremal surfaces bisect Σ+ and

Σ−.

To illustrate this, Figure (??b) shows W ′ interpolated on to the base of the melting re-

gion. The simulation used to plot Figure (??b) generates peak morphological asymmetry

(Ur = U0 = 1 cm yr−1, offset = 40 km). On this surface |W ′| and |Γ′| reach their max-

imum values within the melting region. The trace of these maximum values can be seen

to bisect the regions Σ+ and Σ−.

5.2 Asymmetry Generated Far From Transform Faults

Figure (??) shows that the difference in axial depth between leading and trailing ridge

segments increases with spreading rate when Ur = U0. This is best understood by consid-

ering the effect of the lithosphere on mantle flow far from the transform fault because the

shape of the base of the lithosphere varies only in the cross axis direction. ? describe how
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Figure 10: (a) Figure shows melting region (green surface with grey wire mesh) and ex-
tremal surfaces of W ′. Red extremal surface shows W ′

max, blue surface shows W ′
min.

Black contours denote |Γ′| of 1, 3 and 5 kg m−3 yr−1. Innermost contours have highest
magnitude. Note the close correlation between the extremal surface and maximum per-
turbation of melting rate (|Γ′|). (b) Map of W ′ interpolated onto the base of the melting
region. Black lines show ridge segments, transform fault, Σ+ and Σ−. White lines show
the trace of the extremal surfaces on the base of the melting region. Both figures are gen-
erated from the same simulations. Ur = U0 = 1 cm yr−1. Ridge is migrating to the left in
both cases.
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thickening of the oceanic lithosphere with age causes the base of the lithosphere to have a

curved shape in the cross axis direction. Consequently the average age of the lithosphere

in the simulation domains, and hence cross axis curvature of the base of the lithosphere,

decreases with spreading rate. Decreasing the curvature of the base of the lithosphere has

the effect of increasing |W ′| (and |Γ′|) at all depths. Subsequently, the difference in the

amount of melt focused from Σ+ and Σ− to the ridge segments at constant offset also

increases with spreading rate.

In Figure (??), notable separation exists between all curves except those for Ur = U0 =

4 cm yr−1 and Ur = U0 = 6 cm yr−1. The volume (V ) created by seafloor spreading for

melt from the focusing regions to occupy is

V = 2U◦ tc L, (27)

where tc is crustal thickness and L is the distance over which melt is distributed. At

all offsets studied, the difference in the amount of melt focused from the Σ+ and Σ−

to the ridge segments increases by approximately one third from simulations prescribed

Ur = U0 = 4 cm yr−1 to those where Ur = U0 = 6 cm yr−1. This is offset by the change

in V , which also increases by one thirds between simulations whereUr = U0 = 4 cm yr−1

and Ur = U0 = 6 cm yr−1.

The asymmetry of the perturbed flow about the ridge axis (Figure ??c) can also be ex-

plained by considering the effect of the lithosphere on mantle flow far from the transform

fault. Ridge migration increases the strain rate beneath the leading plate relative to com-

parable points beneath the trailing plate by a factor of 0.2. This causes the leading plate to

be thinner than the trailing plate, which causes |W ′| to be higher beneath the leading plate.
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Figure 11: (a) Schematic ridge system geometry. (b) 2D slice showing temperature taken
between 1 and 2 in (a). Profile generated from a simulation with Ur = U0 = 1 cm yr−1,
offset = 80 km. Thin vertical white line in centre of profile marks the position of the
transform fault. Dashed blue line marks on the approximate base of the lithosphere. A
temperature difference exists between positions a and a′, despite the points being at the
same depth. The temperature difference causes cooling of the younger lithosphere on the
left hand side of the transform fault in the figure and heating of the older lithosphere on
the cooler right hand side. The temperature difference between two corresponding points
on either side of the transform fault demonstrates the thermal edge effect.

5.3 Asymmetry Generated Near Transform Faults

Figure (??) illustrates how the thermal structure of the lithosphere differs on either side of

a transform fault. Diffusion of heat across the transform fault works to cool the younger

lithosphere and heat the older lithosphere. By altering the viscosity, heat diffusion thins

the older lithosphere close to the transform fault and thickens the younger lithosphere.

The thickness of the lithosphere is further modified by the strain rate associated with

plate kinematics. The change in viscosity regime is known as the edge effect. The princi-

ple difference between the 3D and 2D simulations is the ability to simulate the edge effect.

Figures (?? and ??) give examples of how the edge effect modifies the shape of the melt-

ing region and lithosphere. Simulations predict that the edge effect induces along axis

components of curvature to the melting region and lithosphere over distances up to 50 km

from the transform fault. Components of along axis curvature increase W ′ (and hence Γ′)



35 5.4 The Influence of Spreading Rate and Offset on the Edge Effect

by a small positive amount and add an along axis component of velocity to the perturbed

flow.

5.4 The Influence of Spreading Rate and Offset on the Edge Effect

The influence of the edge effect on simulation results is summarised in Figure (12), which

shows how ΓI varies between simulations. For comparison, the melting rate predicted by

2D simulations has also been included. The influence of the edge effect can be broken

down into two components (i) that controlled by spreading rate, (ii) that controlled by

offset. However, it must be appreciated that simulation results (e.g. Figures ??, ??) are

the consequence a competition between spreading rate and offset to modify the shape of

the base of the lithosphere.

Figure 12: Contour maps coloured for the vertically integrated melting rate (ΓI) for all
simulated offsets (l) and spreading rates (Ur = U0). White solid lines mark position
of ridges, transform fault and focusing regions. White dashed lines highlight contours
between regions that have similar colours. Right most column is generated from 2D
simulation results. Ridge system is migrating to the left in all cases.

At constant offset, as Ur = U0 increases, the thermal structure of the lithosphere either

side of the transform fault becomes increasingly similar. This reduces the along axis dis-

tance over which the edge effect is felt. Consequently, spreading rate works to decrease

the along axis extent of the regions Σ+ and Σ− (e.g. Figures 12 u, v, w, x). By reducing

the distance over which the edge effect is felt, increasing spreading rate also increases the

rate of change of W ′, Γ′ and ΓI across the transform fault.

At constant Ur = U0, the along axis distance over which the edge effect is felt increases

with offset. This forces the rate of change of W ′, Γ′ and ΓI across the transform fault to
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increase with offset. The offset is responsible for controlling the cross axis extent of the

regions Σ+ and Σ−. At all offsets, the maximum extent of Σ+ and Σ− in the direction

pointing away from the ridge segments is one focusing distance (h). However the extent

of Σ+ and Σ− on the transform fault side of the ridge axis is constrained to the smaller

of either h or half of the total offset. Consequently, the area of Σ+ and Σ− increases with

offset at fixed Ur = U0 up to offset lengths of 2h. The area of the focusing sub-regions

decreases with further increases in offset.

5.5 Lithospheric Control on Peak Morphological Asymmetry

Figure (??) demonstrates the striking similarity between the shape of depth contours for

the base of the lithosphere and the shape of the extremal surfaces. The extremal surfaces

detail the location of maximum |W ′| at all depths within the domain. This similarity of

shape indicates that the position and morphology of the extremal surfaces is controlled by

the shape of the base of the lithosphere in the simulations run.

Mantle flow is subjected to a component of rotation about a vertical axis within a 50 kilo-

metre wide zone either side of the transform fault. When the motion on the transform

fault is left lateral, anticlockwise rotation occurs beneath the tip of the leading segment

and transform fault, whilst clockwise rotation occurs beneath the tip of the trailing seg-

ment. The intensity of rotation increases with proximity to the base of the lithosphere. At

deeper depths, rotation becomes weaker and more diffuse. It is not yet understood how

rotation of the mantle affects the morphology and spatial position of the extremal sur-

faces. The offset at which the magnitude of morphological asymmetry peaks (Figure ??)

does not reflect a single process. Instead, it ultimately results from complex interactions

between spreading rate, rate of ridge migration and offset length that modify the shape of

the base of the lithosphere and melting region.
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Figure 13: Relationship between shape of the base of the lithosphere and shape of the ex-
tremal surfaces. Extremal surfaces are coloured according to depth. Contours are spaced
and 1 km intervals. Shallowest contour is 10 km. Ridge system shown by magenta lines.
Ur = U0 = 4 cm yr−1. Ridge is migrating to the left.

The curves of morphological asymmetry in Figure (??) are asymmetrical about their peak.

This stems from the rate of change of W ′ and Γ′ about the extremal surfaces. The magni-

tude of the average rate of change of W ′ (and hence Γ′) with distance from the extremal

surface is greatest on the ridge side of the surface. This causes the magnitude of the rate

of change of difference in axial depth with offset to be greatest at offsets less than that at
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Figure 14: Blue streamlines show show the trajectory of melt on the surface of the melting
region during the focusing process. Red circles indicate the positions at which the stream-
lines cross into the crustal generation region. The crustal generation region is defined as
the zone in which melt is segregated from the mantle into the crust. Positions A, B and C
are referred to in the text.

which morphological asymmetry peaks.

5.6 Along Axis Crustal Thickness

Figure (??) shows the along axis crustal thickness predicted by the Streamline algorithm.

The purpose of these profiles is to determine whether the melt focusing mechanism of ?

predicts sensible variation of crustal thickness along the ridge axis. Unrealistic predictions

of along axis crustal thickness could suggest that additional processes operate at shallow

levels to redistribute melt along the ridge axis.

The shape of the crustal thickness profiles in Figure (??) can be explained by considering

the behaviour of the streamlines (Section ??) in the focusing regions. Figure (??) gives a
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representative example of the spatial behaviour of streamlines for an offset of 60 km. The

streamlines run along the steepest local slope of the upper surface of the melting region,

which approximates the high porosity channel of ?.

The small peak at the centre of the crustal thickness profiles in Figure (??) show where

streamlines striking parallel to the ridge axis cross crustal generation region. Between the

ridge-transform intersection and the point at which the melting region reaches its shal-

lowest depth, few streamlines cross into the crustal generation region. This is shown by

the large stretches of near-zero thickness crust close to the transform fault in Figure (??).

This is indicated in Figure (??) as region (A).

When the melting region reaches its shallowest depth, streamlines are able to cross into

the crustal generation region (region B in Figure (??). Thick crust forms because stream-

lines are able to deliver melt to the ridge segment from the sub-regions Σ+ and Σ− and

from positions either side of the ridge.

Slightly further away from the transform fault, the upper surface of the melting region

attains constant depth in the along axis direction. Streamlines do not feel the edge effect

induced by the transform fault and strike perpendicular to the ridge segment along their

full length (region C in Figure ??). This ensures equal delivery of melt at all points along

the axis in the direction pointing away from the transform fault. Consequently, constant

crustal thickness is attained.

Figure (??) shows that the Streamline algorithm predicts an average crustal thickness of

3.4 km. This stems from several assumptions made in the construction of the numerical

model. This implications of the model assumption are discussed in Section (??). The

along axis crustal thickness profiles generated by the streamline algorithm are dissimilar
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to observations from seismic studies (?),?. The dissimilarity between simulated and ob-

served thickness indicates that the melt focusing mechanism of ? cannot solely account

for the observed crustal morphology. Seismic studies (????) have revealed the presence

of thin, narrow axial magma chambers beneath ocean spreading centres. Melt lenses are

thought to sit on top of a crystal mush layer close to the bottom of the sheeted dyke layer

beneath spreading segments. Lenses have also been imaged beneath mid-ocean ridge dis-

continuities.

? show that melt lenses beneath the 9◦03′ N overlapping spreading centre on the East Pa-

cific Rise are discontinuous. They suggest that the discontinuity of melt lenses prevents

magma mixing between the eastern and western ridge segments at this location. However,

they note that the separate magma reservoirs may share a common source. At the same

overlapping spreading centre, ? demonstrate that a large melt anomaly occurs at the end

of the ridge segments. They postulate that the melt anomalies arise from the same 3D

focusing mechanism simulated by the Streamline algorithm used in this thesis. It is likely

that melt sills represent a final melt pooling stage before shallow processes dominate and

redistribute melt along the ridge segment.

It is possible to seismically image candidate shallow-level melt redistribution mecha-

nisms. Normal faults are ubiquitous around the axial valley present at slow spreading

mid-ocean ridges. Faults can act as conduits through which melt is extracted to the sur-

face. Seismic and topographic profiles taken from the Lucky Strike volcano on the Mid-

Atlantic ridge (?) show how a fault connects a topographic high within the axial valley to

an underlying axial magma chamber.

? present results from a three dimensional tomographic study of a section of the Mid-

Atlantic Ridge near the Oceanographer transform fault. Their 3D image shows ' 10
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kilometre wide diapir-like low velocity anomalies within the crust. The anomalies spread

out in the along and cross axis directions. ? are able to correlate the spatial location of

the low velocity anomalies to the geographical position of volcanoes. They attribute the

low velocity anomalies to lateral and vertical redistribution of melt through a network of

dykes.

6 Discussion

6.1 Viscosity

Large variations in strain rate occur throughout the domain. Close to the transform fault

and ridge segments ε̇ ≈ 30 × 10−14s−1 when Ur = U0 = 6 cm yr−1. However, ε̇ decays

rapidly away from the transform fault to between 5× 10−14s−1 and 10× 10−14s−1. This

is the typical range of strain rate values beneath the leading and trailing plates. The high-

est strain rates occur at very shallow depths (< 10km) beneath ridge segments. At such

locations ε̇ can be in excess of 50 × 10−14s−1. Strain rates are much lower in analogous

simulations run with Ur = U0 = 1 cm yr−1. The spatial distribution and behaviour of

strain rates remains much the same as for simulations run with Ur = U0 = 6 cm yr−1.

Despite this, strain rates in simulations where Ur = U0 = 1 cm yr−1 are, on average, one

order of magnitude less than those for Ur = U0 = 6 cm yr−1.

Figure (??) shows that simulations run with the diffusion and dislocation creep dependent

viscosity model create stronger morphological asymmetries than those run with the diffu-

sion creep dependent viscosity model. This difference is caused principally by the strain

rate dependence of the viscosity model. Viscosity scales inversely with ε̇. Accordingly,

the topography of the base of the lithosphere, which controls the behaviour of W ′ and Γ′,

will be exaggerated in simulations run with a non-Newtonian viscosity model relative to
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Figure 15: The magnitude of morphological asymmetry (∆d) depends strongly on the
viscosity model used in the simulations. Negative values of ∆d indicate that the depth to
the trailing segment is less than the depth to the leading ridge segment. This is opposite
to the trend observed by ?. Results are from simulations with Ur = U0 = 2 cm yr−1.
η = η (T ) shows results for simulations with a diffusion creep dependent viscosity model.
Results from simulations with a diffusion and dislocation creep dependent viscosity are
shown by the curve labelled η = η (P, T, strain rate).

those run with a strictly Newtonian viscosity model. Although Figure (??) only shows

results for simulations run with Ur = U0 = 2 cm yr−1, the difference in axial depth at all

offsets between non-Newtonian and Newtonian simulations can be expected to increase

with spreading rate. This is because the range of predicted ε̇ increases with spreading

rate, thus causing greater variation in the topography of the base of the lithosphere. Con-

sequently, greater variation in W ′ and Γ′ is caused by increasing spreading rate.

Results from simulations run with a constant viscosity model in Figure (??) show the op-
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posite asymmetry to that observed by ?. In this case the thermal boundary layer is not

limited by high viscosity, leaving it free to be advected across the domain by the action

of ridge migration. Cold material from beneath the leading plate is advected into the fo-

cusing sub-region Σ+, suppressing melting. Hot material is advected from beneath the

leading ridge segment into Σ−, augmenting melt production in this region. Consequently,

the large negative morphological asymmetries shown in Figure (??) are created.

Layered viscosity models have been a popular choice for numerical and analytical models

of mantle flow and melting beneath MORs and transform faults (e.g ??). In a layered vis-

cosity model, ridge migration would result in advection of material across a portion of the

domain as discussed above. The variable viscosity model used in this thesis highlights the

sensitivity of |W ′| to the shape of the base of the lithosphere. Because layered viscosity

models cannot accurately calculate the response of |W ′| to the shape of the base of the

lithosphere, they are unsuitable for investigating the effect of ridge migration on mantle

flow and melting.

6.2 Influence of Model Assumptions

Computational expense constrains the resolution, scale and complexity of numerical sim-

ulations of mantle flow and melting. The set of equations governing solid and liquid flow

in the mantle have been devrived by ?. This system of equations is too complex to be

solved numerically in a large scale, high resolution domain. In order to isolate funda-

mental aspects mantle dynamics beneath a migrating ridge I use a more tractable set of

governing equations. The governing equations (Equations ??, ??, ??) solve for incom-

pressible flow of the solid mantle. Owing to assumptions made in the construction of

the 3D numerical model, significant differences exist between simulation results and ob-

served data.
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Figure (??) shows that 3D simulations predict an average crustal thickness of 3.4 km

when a reasonable focusing distance is used (h = 55km). This value contrasts strongly

with the observed crustal thickness of 7 ± 1 km (e.g. ?). The 3D model underestimates

the amount of melt produced beneath and focused to a MOR segment. Modelling and

experimental studies estimate the melt fraction needed for MORB genesis to be between

15% and 30% (??). Contrastingly, the 3D model used here predicts the melt fraction to

be approximately 10%. By solving for incompressible flow, the model assumes that no

material is removed from the mantle by melting. However, that mass extraction from the

mantle through melting occurs is demonstrated by the ubiquity of oceanic crust at all mid-

ocean ridges within the range of spreading rates studied (?). Owing to this, mantle flow

within the solidus must be compressible. Therefore, the flux of solid mantle into the melt-

ing region is greater in a compressible mantle than in an incompressible mantle at a given

Ur = U0. Provided that the adiabatic productivity is the same in both cases, compressible

flow models will predict a higher melt fraction than models simulating incompressible

flow. It is likely that a significant fraction of the difference between the predicted and

observed crustal thicknesses results from the condition of incompressibility.

Computational expense prevents the model from simulating thermodynamically governed

mantle melting at the scale and resolution required by these simulations. Beneath the

solidus, upwelling material is moved along the mantle adiabat. Melting begins when the

upwelling rock migrates into the melting region. The latent heat needed to melt the rock

is sourced from the internal energy of the upwelling rock. This causes the temperature of

mantle material to decrease more rapidly than it would along the solid and liquid adiabats

(?). The governing equations do not account for change in the mantle’s thermal structure

induced by melting. It is difficult to predict how inclusion of the latent heat of melting in

the model would alter the simulation results.
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6.3 Melt Focusing

Along axis variation in rare earth elements (REEs) may be used to better constrain the

scale and geometry of along axis melt redistribution. Dy/Yb provides a good proxy for

assessing the amount of melt originating from a deep garnet-rich source region (e.g. ???).

Owing to Dy being much more incompatible in garnet than Yb (?), melt from a garnet-

rich source will have a high Dy/Yb relative to shallow melts.

Figure (??) shows that the roof of the melting region is deeper within the focusing sub-

regions Σ+ and Σ− than it is along the length of the ridge segment. Therefore, a higher

proportion of melt originating from within Σ+ or Σ− will originate from a garnet source

relative to melts produced along the ridge segment. Consequently, melts produced in

Σ+ or Σ− can be expected to have higher Dy/Yb ratios than other melts produced in

the domain. If profiles of Dy/Yb concentration were plotted along ridge segments, sharp

pronounced peaks in Dy/Yb close to the transform fault will indicate little along axis

redistribution of melt. Conversely, broad peaks in Dy/Yb close to transform faults may

suggest significant along axis redistribution of melt. Alternatively, melt from different

source regions may be mixed before it is sequestrated into the crustal generation region.

? note that the higher Dy/Yb ratios are typically associated with the leading ridge seg-

ment. This arises because ridge migration ensures that the mantle melting within Σ− has

undergone previous melting whilst in Σ+. This depletes the mantle in Σ− in Dy/Yb rela-

tive to that in Σ+. Further analysis of simulation results, coupled with a simple model of

mantle Dy/Yb composition will allow the geochemical asymmetry generated by the 3D

model to be evaluated in a similar way to the morphological asymmetry. In turn, this may

be used to help refine estimates for the focusing distance.
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7 Conclusions

The 3D numerical model described in this thesis shows that lithosphere-induced man-

tle dynamics can account for morphological variation observed along mid-ocean ridges

(MORs). The component of mantle flow induced by ridge migration perturbs the melt-

ing rate throughout the sub-ridge mantle. This perturbation results in different amounts

of melt being focused to ridge segments separated by an offset, causing morphological

asymmetry between MOR segments. The behaviour of the component of flow induced

by ridge migration is sensitive to the shape of the base of the lithosphere. Spreading rate,

rate of ridge migration and offset length control the shape of the base of the lithosphere.

The 3D simulations suggest that the maximum distance over which melt can be focused

to the ridge segment is 55 km, assuming complete extraction of melt from the mantle.

Previous work with 2D simulations of asthenospheric flow and melting estimated the fo-

cusing distance to be 24 km (?). The revised figure of 55 km is an improvement on the

estimate provided by the 2D model and closely agrees with estimates based on dynamical

and thermodynamical calculations of asthenospheric flow and melting (?).

2D simulations of mantle flow beneath migrating MORs are useful for investigating the

scale of upwelling and melting at large distances from transform faults. However, 3D

models are needed to capture the behaviour of mantle flow and melting near transform

faults. It is necessary for numerical models of mantle flow and melting beneath mid-ocean

ridges to employ a variable viscosity model. The asymmetry of melting rates between the

focusing regions for adjacent ridge segments is enhanced by a factor of 2 or 3 by use of a

non-Newtonian (dislocation creep and diffusion creep) viscosity model over a Newtonian

(diffusion creep) viscosity model.

The size of the domain used is limited by computational expense. Further work is needed

to understand how the magnitude of the melting rate perturbation scales with the simu-
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lated asthenospheric depth. Geochemical data and simple models of mantle composition

can be used with the 3D model to better understand the scale of the melt focusing and

along axis redistribution of melt.
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Appendices

A Notation

Variable Meaning Value used Dimensions
x Coordinate aligned with the cross axis direction
y Coordinate aligned with the along axis direction
z Coordinate aligned with the depth direction
W Vertical component of velocity m s−1

X Physical extent of domain in the x direction m
Y Physical extent of domain in the y direction m
Z Physical extent of domain in the z direction m
P Dynamic pressure Pa
T Temperature ◦C
θ Mantle potential temperature ◦C
η Viscosity Pa s−1

ε̇ Strain rate s−1

κ Thermal diffusivity 10−6 m2s−1

h Focusing distance m
Γ Melting rate kg m−3yr−1

ΓI Vertically integrated melting rate
∫ Z

0
Γ d z kg m−2yr−1

∆d Difference in axial depth across ridge offsets m
Ur Rate of ridge migration m s−1

U0 Half spreading rate m s−1
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B Derivation of the Governing Equations

B.1 The Mass Conservation Equation

The mass conservation equation (Equation ??) is otherwise known as the continuity equa-

tion. Mass must be conserved because the model solves for incompressible fluid flow.

Consider an arbitrary finite volume V viewed in Eulerian coordinate space. Fluid with

density ρ moves in and out of the volume with velocity v at points across the surface

of the volume. Taking dS to be an element of the surface, where |dS| is the area of the

element and its direction is the outward pointing normal, the component of v parallel to

dS is the velocity that transfers mass out of V . Therefore, the outward mass flux per unit

time from the arbitrary volume V is ρv · dS. Consequently,

rate of mass loss fromV =

∫
S

ρv · dS (28)

total mass in volumeV =

∫
V

ρ dV. (29)

From Equations (?? and ??) we get

d

dt

∫
V

ρdV =

∫
V

∂ρ

∂t
dV = −

∫
S

ρv · dS. (30)

focusing on conserving mass at a point, rather than throughtout the whole of a finite

volume renders the first term in Equation (??) redundant and reduces the rest to

∂ρ

∂t
= − lim

V→0

[∫
ρv · dS

V

]
. (31)

Equation (??) can be reduced, by definition of the divergence operator, to

∂ρ

∂t
= ∇ · (ρv) . (32)
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Assuming constant density, the continuity equation (??) reduces to the simple form

∇ · v = 0 (33)

B.2 The Navier Stokes Equation

An element of fluid of volume V, density ρ, and surface area ∂V , is subjected to velocity

v. A surface force results from traction t, and gravity g acts to provide a body force.

Writing these into a force balance gives

∫
V

ρ ai dV =

∫
V

ρ gi dV +

∫
∂V

ti dS (34)

where ai is acceleration. Substituting ti = τijnj into (??), where τij is the stress tensor

and nj is the normal to the surface traction is acting across, we get

∫
V

ρaidV =

∫
V

ρgidV +

∫
∂V

τijnjdS (35)

Applying the divergence theorem to equation (??) and dividing through by the volume V

gives

ρai = ρgi + τij,j (36)

where τij,j = dτij/dxj . In the Lagrangian frame of reference (coordinate frame moves

with the fluid particle), the components of the small distance moved by the fluid particle

in time δt (in the limit of δt → 0) are δx, δy, and δz. The acceleration of the particle can

be written as

a =
Dv

Dt
=
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
(37)

where v = (u, v, w). In suffix notation this is simply ai = v̇i + vjvi,j . By substituting

equation (??) into (??) we can write the rate of change of momentum of a fluid particle
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more fully as

ρvjvi,j + ρ
∂vi
∂t

= ρgi + τij,j. (38)

Newton’s law for a viscous fluid states

τij = −Pδij + 2µ ˙εij (39)

where ε̇ij is the strain rate tensor and µ is the viscosity.

ε̇ij =
1

2
(vi,j + vj,i) . (40)

Substituting equations (??) and (??) into (??) gives the Navier Stokes equation:

ρvjvi,j + ρv̇i = ρgi +− [Pδij + µ (vi,j + vj,i)],j , (41)

or

v · ∇v +
∂v

∂t
= −1

ρ
∇P +

1

ρ
∇ ·
[
µ
(
∇v +∇vT

)]
+ g. (42)

B.3 Stokes Flow

Assuming steady state flow and negligible contribution from the body force, the Navier

Stokes equation can be simplified to

ρv · ∇v = −∇P +∇ ·
[
µ
(
∇v +∇vT

)]
. (43)

The first term in this equation is the inertial term, the second is the pressure force and the

third is the viscous force. In the case of viscous fluids, the viscous terms dominate over

the inertial terms. Where U and L are velocity and length scales respectively, this can be
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represented by considering the Reynolds number of the fluid

Re =
inertial terms
viscous terms

∼ ρUL

µ
(44)

By non-dimensionalising the simplified momentum equation (??) we can make a further

simplification that is applicable to viscous fluids. We define dimensionless variables,

indicated by primes

x = Lx′, v = Uv′, m = Mm′, t = Tt′. (45)

Here L is a characteristic length scale, equal to the length of the domain the equations

are solved in. U is a characteristic velocity scale. Like the length scale, this is a con-

stant and takes the value of the half spreading rate of the ridge system. M and T are

characteristic mass and time scales respectively. Using these quantities, it is possible to

non-dimensionalise pressure, density and the differential operator∇

P =
M

LT 2
, ρ =

M

L3
, ∇ =

1

L
∇′. (46)

In terms of the non-dimensional variables, the Navier Stokes equation in the absence of

body forces and under steady state conditions becomes

U2

L
v′ · ∇′v′ = − L

T 2

1

ρ′
∇′P ′ +∇′·

[
U

T

µ′

ρ′
(
∇′v +∇′v′T

)]
(47)

Dividing through by U2/L and substituting in equation (??) with µ and ρ in their non-

dimensional form yields

v′ · ∇′v′ = − 1

ρ′
∇′P ′ +∇′ ·

[
1

Re

(
∇′v′ +∇′v′T

)]
. (48)
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In the limit Re → 0 (applicable for highly viscous fluids), the inertial term can be ne-

glected and a dominant balance exists between the viscous and pressure gradient forces.

From equation (??) we get

0 = − 1

ρ′
∇′P ′ +∇′ ·

[
1

Re

(
∇′v′ +∇′v′T

)]
. (49)

Reverting to the dimensional form and considering the dimensional form of equation (??)

with (??) we find

∇P = ∇ ·
[
µ
(
∇v +∇vT

)]
s.t. ∇ · v = 0. (50)

B.4 Advection and Diffusion of Heat

Conduction, diffusion and advection of heat give rise to variations in the viscosity and

density of the sub-ridge mantle. The Boussinesq approximation states that density vari-

ations can be neglected except in the buoyancy term, where they are multiplied by g.

Making the further assumption that buoyancy forces are negligible allows all density vari-

ationsto be neglected. This assumption is reasonable provided that all accelerations in the

flow are small compared with| g | ( i.e. | Du/Dt | � | g |). For the Boussinsq approx-

imation to be valid and accurate the ratio of difference in densities, ∆ρ to a reference

density, ρo is of the order unity (i.e. ∇ρ/ρo � 1). The effect of temperature on density

can be linearised in these circumstances: modg

∆ρ = −αρo∆T (51)
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For rock, α ' 10−5K−1. From this we can see that even with temperature variations on

the order of 103 K, ∆ρ/ρ � 1. Applying the Boussinesq approximation and sssuming

that the specific heat capacity at constant pressure, Cp is uniform throughout the domain,

ρCpDT/Dt is equal to the rate of heating per unit volume of material. A thermal equation

can be obtained by modifying the Navier Stokes equation. Heating of mantle material is

brought about by transfer of thermal energy from neighbouring fluid particles by thermal

conduction and, sometimes through internal heat generation, for example, through decay

of radionucleides. These conduction and internal heat generation terms are analogous to

the viscous and body force terms of the Navier Stokes equation. The conductive heat flux

is

H = −k∇T, (52)

where k is the thermal conductivity of rock. Therefore

ρCp
DT

Dt
= −∇ ·H + J (53)

where J is the rate of internal heat generation per unit volume. Taking k to be constant

throughout the domain equation (??) can be rewritten

∂T

∂t
+ v · ∇T = κ∇2T +

J

ρCp
(54)

where

κ =
k

ρCp
. (55)

where κ is the thermal diffusivity. Assuming there is no internal heat generation, and

applying the existing assumption that the system is at steady state, equation (??) reduces

to

v · ∇T = κ∇2T (56)
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C Melt Focusing Algorithms

C.1 Streamline Focusing Algorithm

function rs = streamAnalysisMeshBeta(rs, fdist)

% FUNCTION rs = streamAnalysisMeshBeta(rs,fdist)
%
% rs = simulation, fdist = focusing distance (km).
%
% function calculates how melt is focused to the ridge segment by
% plotting streamlines from cells lying within the focusing distance
% from the ridge (fdist). Streamlines are defined by the gradient of
%the melting region. Streamlines that originate from a position
% outside of the y-dimensions of the ridge (i.e. one of the omega
%areas defined in Katz et al 2004) are used to work out the mass of
%melt and thickness of crust distributed over the first 1km of the
% ridge segment. These values are represented in rs.melt.M,
%rs.melt.C and rs.melt.D, allowing direct comparison of this
%streamline algorithm with the nearest neighbour and simple
%(2D) focusing algorithms.

[xr yr] = getRidgePosVector(rs);
full_rate = 2 * rs.par.half_rate * 1e-2; %(m)
rhoc = 2900; % density of crust (kg /mˆ3)
dx = 1; %y-grid spacing
dy = 1; %x-grid spacing (km)

% Meshgrid fields and include bcs
% sv = gradient of solidus in y direction
% su = gradient of solidus in x direction
% ga is the melting rate field
% ga_zi is the vertically integrated melting rate
[Xo Yo] = meshgrid(rs.coord.x, rs.coord.y);
suMesh = interp2(Xo,Yo,rs.melt.su,1:max(rs.coord.x),...
[1:max(rs.coord.y)]','linear');

svMesh = interp2(Xo,Yo,rs.melt.sv,1:max(rs.coord.x),...
[1:max(rs.coord.y)]','linear');

gaMesh = interp2(Xo,Yo,rs.melt.ga_zi,1:max(rs.coord.x),...
[1:max(rs.coord.y)]','linear');

if rs.par.periodic == 0
% if the simulation is non-periodic
% i.e. reflection condition on y boundary

svMesh = [svMesh(1,:);svMesh;svMesh(end,:)];
suMesh = [suMesh(1,:);suMesh;suMesh(end,:)];
gaMesh = [gaMesh(1,:);gaMesh;gaMesh(end,:)];

else
svMesh = [svMesh(end,:);svMesh;svMesh(1,:)];
suMesh = [suMesh(end,:);suMesh;suMesh(1,:)];
gaMesh = [gaMesh(end,:);gaMesh;gaMesh(1,:)];

end
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clearvars Xo Yo;

% Calculate streamlines and focused melt
%Initialise arrays
arrsize = size(gaMesh);
interceptMelt = zeros(arrsize(1), arrsize(2), ceil(length(xr)/2));
rs.melt.streamM = zeros(1,ceil(length(xr)/2));
rs.melt.startPlotterL = zeros(arrsize(1), arrsize(2));
rs.melt.startPlotterT = zeros(arrsize(1), arrsize(2));
rs.melt.startCounter = [0 0];
[X Y] = meshgrid([1:rs.par.width],[0:rs.par.length+1]');

for i = 2:2:length(xr) %loop over ridge segments
xrr = [xr(i-1) xr(i)];
yrr = [yr(i-1) yr(i)];
for j = 1:arrsize(2)
for k = 2:arrsize(1)-1

y = Y(k,1); x = X(1,j);
% if grid cell is within 1 fdist of the ridge

if (x ≤ max(xrr) + fdist && x≥ min(xrr) - fdist &&...
(max(yrr) 6= min(yrr)))

str = stream2(X,Y,suMesh,svMesh,x,y,[0.1 1600]);
seg = focusedToSegment(rs, str, xrr, yrr, dx, dy, ...

fdist,i);
end

end
% if ridge segment is trailing

if (seg(1) == 1 && round(i/4)==i/4 && (str{1}(1,2)...
< min(yrr)))

%calculate mass of melt focused from focusing region
rs.melt.streamM(1,i/2) = rs.melt.streamM(1,i/2) + ...

(gaMesh(seg(2), seg(3))...

* dx * dy * 1e6);
rs.melt.startCounter(1) = rs.melt.startCounter(1)+1;
rs.melt.startPlotterT(seg(2),seg(3)) = 1;

%else if the segment is leading
elseif (seg(1) == 1 && round(i/4) 6= i/4 && ...

(str{1}(1,2) > max(yrr)))
rs.melt.streamM(1,i/2) = rs.melt.streamM(1,i/2) + ...

(gaMesh(seg(2), seg(3)) * dx * dy * 1e6);
rs.melt.startCounter(2) = rs.melt.startCounter(2)+1;
rs.melt.startPlotterL(seg(2), seg(3)) = 1;
end

end
end

% Convert streamM to crustal thickness and change in axial depth
rs.melt.streamC = rs.melt.streamM ./(full_rate * 1e3 * rhoc);
rs.melt.streamD = rs.melt.streamC .* 0.17;

% Calculate the along axis crustal thickness
rs.melt.hiResCrust = squeeze(sum(interceptMelt,2)) ./ ...
(full_rate * rhoc * 1e3);

function seg = focusedToSegment(rs, str, xrr, yrr, dx, dy, fdist,ridge)
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x = str{1}(:,1);
y = str{1}(:,2);
seg = zeros(7,1);
xtol = dx; ytol = dy * 0.1;
d = distanceFromSeg(x(1),y(1),xrr,yrr,fdist);

if (isempty(d) == 0 && d ≤ fdist)
xi = find(x ≥ (min(xrr) - xtol) & x ≤ (max(xrr) + xtol));
yi = find(y ≥ (min(yrr) - ytol) & y ≤ (max(yrr) + ytol));
int = intersect(xi,yi);
xint = x(min(int)); % gives spatial position of intersection
yint = y(min(int));

if (isempty(int) == 0) % i.e. if there IS intesection and focusing
seg(1) = 1;
seg(2) = y(1) / dy+1; % position melt is focused from
seg(3) = x(1) / dx;
seg(4) = round(yint / dy);
seg(5) = round(xint / dx);
seg(6) = yint;
seg(7) = xint;
end

end

function d = distanceFromSeg(x,y,xrr,yrr,fdist)

xs = abs(x - max(xrr))ˆ2;
ymaxs = abs(y - max(yrr))ˆ2;
ymins = abs(y - min(yrr))ˆ2;

if (y ≤ max(yrr) && y ≥ min(yrr) && ...
((abs(x) - max(xrr)) ≤ fdist))

d = abs(x - max(xrr));
elseif (y > max(yrr))

d = sqrt(xs + ymaxs);
elseif (y < min(yrr))

d = sqrt(xs + ymins);
else

d = [];
end

function [xr, yr] = getRidgePosVector(rs)

xr = [];
yr = [0];
for i = 1:7

rp = ['rpos',num2str(i)];
tp = ['tpos',num2str(i)];
if (isfield(rs.par,rp))
xr = [xr,getfield(rs.par,rp), getfield(rs.par,rp)];
end
if (isfield(rs.par,tp));
yr = [yr,getfield(rs.par,tp), getfield(rs.par,tp)];
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end
end
xr = xr * rs.par.Lscale;
yr = [yr,yr(end)] * rs.par.Lscale;

C.2 Rectangular Focusing Algorithm

function rs = simpleAnalysisMesh(rs,fdist)

% FUNCTION simpleAnalysisMesh creates a fine 1 x 1km mesh and
%lays it over the regions of rs.melt.ga_zi that are focused to the ridge.
% It interpolates the values of rs.melt.ga_zi.

[xr,yr] = getRidgePosVector(rs);

%Define parameters and initialise array.

rs.melt.simpleM = zeros(1,length(xr)/2);
full_rate = 2 * rs.par.half_rate * 1e-2; %m
rhoc = 2900; %kg /mˆ3
L = 1e3; % distance over which melt is distributed (m)

% Integrate over the focusing area
for i = 2:2:length(xr)

xrr = [xr(i-1) xr(i)];
yrr = [yr(i-1) yr(i)];
[X,Y] = meshgrid(rs.coord.x, rs.coord.y);
if (max(yrr) - min(yrr) 6= 0) %outside j dimension of ridge
if ((round(i/4) - i/4 6= 0)) %if ridge segment is leading

Z = interp2(X,Y,rs.melt.ga_zi, ...
((min(xrr) - fdist):1:(min(xrr)+fdist)),...
(max(yrr):1:(max(yrr)+fdist))');

rs.melt.simpleM(1,i/2) = sum(sum(Z,2)) * 1e6;
else %ridge segment is trailing

Z = interp2(X,Y,rs.melt.ga_zi, ((min(xrr) - ...
fdist):1:(min(xrr)+fdist)),...
((min(yrr)-fdist):1:min(yrr))');

rs.melt.simpleM(1,i/2) = sum(sum(Z,2))* 1e6;
end
end

end

%convert simpleM to crustal tthickness, C and isostatically
% compensate (D)
rs.melt.simpleC = rs.melt.simpleM ./(full_rate * rhoc * L);
rs.melt.simpleD = rs.melt.simpleC .* 0.17;

function [xr, yr] = getRidgePosVector(rs)

xr = [];
yr = [0];
for i = 1:7

rp = ['rpos',num2str(i)];
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tp = ['tpos',num2str(i)];
if (isfield(rs.par,rp))
xr = [xr,getfield(rs.par,rp), getfield(rs.par,rp)];
end
if (isfield(rs.par,tp));
yr = [yr,getfield(rs.par,tp), getfield(rs.par,tp)];
end

end
xr = xr * rs.par.Lscale;
yr = [yr,yr(end)] * rs.par.Lscale;

C.3 Half-Circle Focusing Algorithm

function rs = nearestAnalysisMeshBeta(rs,fdist)

% Integrates the vertically integrated melting rate over a
% half-circle focusing region to calculate the asymmetry in
% the amount of melt focused to the ridge segments from the
% focusing regions

[xr,yr] = getRidgePosVector(rs);
rhoc = 2900; % density of crust (kg/mˆ3)
dx = 1; % interpolated grid spacing (km)
dy = 1; % interpolated grid spacing (km)
L = 1e3; % distance over which melt is

%distributed (m)
full_rate = 2 * rs.par.half_rate * 1e-2; % full spreading rate (m/yr)

[X,Y] = meshgrid(rs.coord.x,rs.coord.y);
x = 1:1:rs.par.width;
y = 1:1:rs.par.length;
%ga_zi = rs.melt.ga_zi;
ga_zi = interp2(X,Y,rs.melt.ga_zi,x,y','spline');
% initialise arrays
rs.melt.nearestM = zeros(1,length(xr)/2);
rs.melt.sum = zeros(1,length(xr)/2);
a = zeros(size(ga_zi));

% loop over ridge segments
for k = 2:2:length(xr)

xrr = [xr(k-1) xr(k)];
xrr = round(xrr);
yrr = [yr(k-1) yr(k)];
omega = zeros(size(ga_zi));

% create masks (omega) for focusing regions
if ((round(k/4) 6= k/4) && (max(yrr) 6= min(yrr)))

% segment is leading and point lies outside
% y dimension of ridge

for i = ((min(xrr) - fdist):1:(min(xrr)+fdist))
for j = (max(yrr):1:(max(yrr)+fdist))

if j>max(yrr)
x = abs(i - min(xrr));
y = abs(j-max(yrr));
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d = sqrt(xˆ2 + yˆ2);
if (d≤fdist)
omega(j,i) = 1;
end

end
end

end
elseif (round(k/4) == k/4 && (max(yrr) 6= min(yrr)))

% segment is trailing and point lies outside y
% dimension of the ridge

for i = ((min(xrr)-fdist):1:(min(xrr)+fdist))
for j = ((min(yrr)-fdist):1:min(yrr))

if j<min(yrr)
x = abs(i-min(xrr));
y = abs(j-min(yrr));
d = sqrt(xˆ2+yˆ2);
if (d≤fdist)
omega(j,i) = 1;
end

end
end

end
end

% calculate amount of focused melt (kg /yr) (nearest.M)
focused = omega .* ga_zi;
rs.melt.sum(1,k/2) = sum(sum(omega,2));
rs.melt.nearestM(1,k/2) = sum(sum(focused,2)) .* (1e6 * dx * dy);
a = a+omega;

end

% Convert mass of melt to crustal thickness (C) and axial depth(D)
rs.melt.nearestC = rs.melt.nearestM ./ (rhoc * full_rate * L);
rs.melt.nearestD = rs.melt.nearestC .* 0.17;

function [xr, yr] = getRidgePosVector(rs)

xr = [];
yr = [0];
for i = 1:7

rp = ['rpos',num2str(i)];
tp = ['tpos',num2str(i)];
if (isfield(rs.par,rp))
xr = [xr,getfield(rs.par,rp), getfield(rs.par,rp)];
end
if (isfield(rs.par,tp));
yr = [yr,getfield(rs.par,tp), getfield(rs.par,tp)];
end

end
xr = xr * rs.par.Lscale;
yr = [yr,yr(end)] * rs.par.Lscale;
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D Parallel Performance of the 3D Code

The program is memory intensive. When the problem size exceeds 50000 degrees of

freedom per processor, performance is sharply degraded. Although PETSc provides the

program with inherent parallelism, perfect scaling with between the problem run time

and increasing number of processors is not guaranteed. Figure (??) shows how the run

time of the code scales with the number of processors used, compared to ideal scaling.

This scaling study shows that the code remains efficient when distributed across a number

of processors. Simulations run for this study each took approximately 10 hours on 128

processors.
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Figure 16: Normalised run time as a function of degrees of freedom (D.O.F) per proces-
sor (thus number of processors). The problem size is held constant as the number of pro-
cessors is increased. Ideally scaling would be perfect, with the run time decreasing by a
factor of 2 each time the number of processors is doubled. This figure shown that the code
is more than 75% efficient. The scaling study was conducted on REDQUEEN, Oxford
Supercomputing Centre. REDQUEEN has 264 dual core Intel Xeon 2.6GHz processors
shared equally across 128 computing nodes. Each node has 4GiB RAM. More informa-
tion about this system can be found at www.oerc.ox.ac.uk/resources/osc.

www.oerc.ox.ac.uk/resources/osc
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